	case study
	cover letter
	creative writing
	presentation
	problem solving
	rewiew prompts
	websites tips

presentation
pdf reports in java

Share on FacebookShare on Twitter

JavaTechOnline
Making java easy to learn, how to generate dynamic pdf report using spring boot.
	Spring Boot

Last Updated on January 11th, 2024

Here we will use Spring Boot to generate our dynamic PDF. However, you can easily utilize the code from this example to generate PDF in any other framework of Java. Moreover, you can generate in a Simple Servlet application also using this spring boot pdf generation example.
Table of Contents

What all functionalities will you get in generated PDF?
1) All contents in the PDF which are appearing as static, are actually dynamic. Moreover It is designed in such a way that you don’t need to make changes in your source code. You just have to provide entries of dynamic values in application.properties file accordingly.
2) You can easily replace the Logo on the upper right corner.
3) The header line of the PDF “Employee-Report” is dynamic & can be changed.
4) Also, Number of columns in the PDF table can be updated as per your need.
5) You can easily replace the Name of Table columns as per your need.
6) Values in the PDF table are dynamic & taken from the database.
7) Moreover, any prefix can be added to update all values of a particular column. It is like ‘$’ symbol as a prefix in the ‘Emp Sal’ column.
8) We can also update PDF footer easily.
9) The next important thing, We can have the PDF file name suffixed or prefixed with the current date.
What will you learn after implementing this application?
1) Where to use Annotations such as @Value, @Query, @Autowired, @Component, @Entity, @Id etc. ?
2) How to work with application.properties file?
3) In addition, How to inject values from properties file as an Array & List?
4) How to write code without hard-coding the values using Spring Boot?
5) Also, How to use List.Of() method introduced in JDK9?
6) How to include any prefix dynamically in all values of a particular column?
7) Equally important, How to write modular & reusable code?
8) How to implement dynamic code with minimal changes, keeping future change requests in mind?
9) Last but not the least you will learn “How to Generate Dynamic PDF Report using Spring Boot?”.
Software Used in this project?
♦ STS (Spring Tool Suite) : Version-> 4.7.1.RELEASE ⇒ Dependent Starters : Spring Data JPA, MySQL Driver, Spring Configuration Processor ♦ MySQL Database : Version ->8.0.19 MySQL Community Server ♦ JDK8 or later versions (Extremely tested on JDK8, JDK9 and JDK14)
External Dependencies
In order to get the features of PDF in our example ‘How to Generate Dynamic PDF Report using Spring Boot?’, we will add following ‘iText’ dependency in pom.xml as an external jar.
You can find this dependency from itext mvn repository .
Pre-requisites
Before implementing the example ”How to Generate Dynamic PDF Report using Spring Boot?”, you should already have a database to fetch values from there. If you are not familiar with ‘how to save data into database’, you can visit to ‘ Saving Data into database in a batch using Spring boot- Data JPA ‘. You can also use your own existing database to test the functionalities accordingly.
Coding Steps: How to Generate Dynamic PDF Report using Spring Boot?
Step #1 : create project in sts.
If you are new in Spring Boot, kindly visit Internal Link to create a sample project in spring boot.
Step #2 : Writing classes & updating application.properties
Your project structure should look like below screenshot.

Below are the codes for each file.
How to run the application?
We have done with the implementation of our example ‘How to Generate Dynamic PDF Report using Spring Boot?’. Now, in order to run the application, right click on Project and select Run As >> Spring Boot App. Subsequently, observe the output in the console. You will see a message “—Your PDF Report is ready!——”
Testing Results
In order to test the results, go to the location where you have saved your generated PDF. Now verify the values you are expecting to appear in the PDF. Your PDF will look like below screenshot.

How to implement our own PDF Report from this Example with minimal changes?
We need to change values of properties included in the application.properties.
1) Update the values of the first 4 properties as per your database.
2) Then, Update the pdf file storage path in the value of property ‘pdfDir’.
3) To change the Logo on the upper right corner change the values of 2 properties : ‘logoImgPath’ & ‘logoImgScale’. ‘logoImgPath’ is for image storage path in your system and ‘logoImgScale’ is for image scaling in percentage.
4) In order to change the Header of the PDF change the values of ‘reportFileName’.
5) To change the format of Date in the first line change the value of ‘localDateFormat’.
6) Next, To change the Number of Columns in the PDF table change the value of ‘table_noOfColumns’.
7) In order to change the Column Names of PDF table, change the values of ‘table.columnNames’. In the end, make sure that number of column names values are equal to the value of ‘table_noOfColumns’ property. Otherwise, you will get an error.
8) To change the currency from ‘$’ to any other symbol change the value of ‘currencySymbol’. However If you don’t want to include any symbol leave it blank. Any other prefix can also be included with all values of a particular column.
Below are the changes in java files : 9) In order to display dynamic database values you need to create a new Entity class, new Repository class in place of Employee.java & EmployeeRepository.java respectively.
10) Subsequently, you need to update getDbData() method of PDFGenerator.java as per your database.
Can we apply this implementation in a real project ?
Of course, you can apply this implementation in a real project if no constraints on using itextpdf library. You just have to do modifications described above according to your requirement.
What are the changes do we need to do if we want to use this functionality in our real project ?
In order to use the implementation of ‘How to Generate Dynamic PDF Report using Spring Boot?’ in your real project, you have to go through the minimal modifications suggested in the above section. That is ‘How to implement our own PDF Report from this Example with minimal changes?’ of this article.
In this article we have covered all the theoretical and example part of ‘How to Generate Dynamic PDF Report using Spring Boot?’, finally, you should be able to implement a pdf generation using Spring Boot. Similarly, we expect from you to further extend this example, as per your requirement. Also, try to implement it in your project accordingly. Moreover, Feel free to provide your comments in the comments section below.
♦ Additionally, If you face any issue on running this project, don’t hesitate to write your comments below.

3 thoughts on “ How to Generate Dynamic PDF Report using Spring Boot? ”
	Pingback: How to Schedule a Task/Job in Java? : Spring Boot Scheduler | Making Java easy to learn
	Pingback: How to Upload Excel data into Database Using Spring Boot | Making Java easy to learn

You’ve made some good points there. I checked on the net for more info about the issue and found most people will go along with your views on this web site.
Leave a Reply Cancel reply
Creating PDF with Java and iText - Tutorial
1. overview, 2. installation, 3. create a pdf, 4. formatting your output, 5. read an existing pdf, 6.1. itext resources.
Java and PDF with iText. This article demonstrate how to create PDF files with Java and the iText library. In this tutorial iText version 5.0.x is used
iText is a Java library originally created by Bruno Lowagie which allows to create PDF, read PDF and manipulate them. The following tutorial will show how to create PDF files with iText. This tutorial assumes that you have basis Java and Eclipse knowledge.
iText has a hierarchical structure. The smallest text unit is a "Chunk" which is a String with a pre-defined font. A "Phrase" combines several Chunks and allows to define line spacing. "Paragraph" is a subclass of "Phrase" and allows to define more layout attributes, e.g. margins. The class "Anchor" is a subclass of "Paragraph" and serves as the basis for hyperlinks in the generated PDF.
Download the iText core binary from the webpage http://sourceforge.net/projects/itext/ . The download contains one jar which is required if you want to use iText.
Create a new Java project "de.vogella.itext.write" with the package "de.vogella.itext.write". Create a folder "lib" and put the iText library (jar file) into this folder. Add the jar to your classpath .
Create the following class "FirstPdf.java" . I assume that the code is pretty much self-explaining. I tried to add lots of comments to make it easier to understand. For more complex examples have a look at the iText Homepage .
The resulting pdf should look like the following.
Paragraph allows to set the alignment and the indentation. For this example create project "de.vogella.itext.position" similar to the previously created ones. Create the following class "PositionPdf.java".
iText allows to read existing pdf’s and include them into your own pdf. The following example will create page 2 of the previous example and create a new document with this page.
Create a new Java project "de.vogella.itext.readpdf" with the package "de.vogella.itext.read". Create a folder "lib" and put the iText library (jar file) into this folder. Add the jar to your classpath . Create the following class "ReadAndUsePdf.java".
6. Links and Literature
iText Homepage
http://itextdocs.lowagie.com/tutorial/ Tutorial from iText homepage, lots of specific examples
If you need more assistance we offer Online Training and Onsite training as well as consulting
See License for license information .

Generate PDF document using JasperReports and Spring boot

1. Overview
Almost every JAVA project need to generate PDF documents for its users, for example:
	For an e-commerce project, we generate Invoice, receipt and return…
	For a supervision and monitoring application, we generate reports.

The JasperReports is one of the best Java libraries for generating PDF documents.
In this article, I will show you how to generate PDF documents using JasperReports, Spring Boot and Jaspersoft Studio.
2. Implementation
Let’s suppose we are working on an e-commerce application (e.g. Hybris), and we want to generate the invoice as a PDF for our customers.
This is a simplified version of how we are going to set up the generation of the invoice using JasperReports.

	I18n-fr.properties, i18n-en.properties, i18n.properties : is an i18n resource bundles used to translate the generated pdf file.
	Template.jrxml : is a JasportReports template created using Jaspersoft Studio.
	Invoice.pdf : is the final pdf document generated with the help of JasperReports.

2.1. JasperReports Template.
First of all, we need to create the JasperReports template of our invoice PDF document.
1. Download and install the Jaspersoft Studio.
2. Open the Jaspersoft Studio and create a JasperReports template using the toolbox that comes with it.
I have already generate a JasperReports template, you can find it in Github .
The JasperReports template is an XML file with extension .jrxml .

Let’s shed light on some of the JRXML elements :
This code snippet will add an image to the final pdf file, <![CDATA[$P{logo}]]> this parameter will be filled in Java with path to the image.
This code snippet adds a dynamic attribute to the pdf file, it will be filled in runtime with proper value: $P{order}.getAddress().getStreetName()
This one is similar to the last one, however this time the field value will be retrieved from the i18n resource bundle depending on the chosen languages (fr, en, it…).
2.2. Create i18n Resource Bundle
1. Create a file property for each language you need.
2. Extract all the static field from your jrxml template and add them (translated) to your files properties.
2.3. Create Spring Boot Project
1. Create a Spring Boot project using Spring Initializr .
2. Add the JasperReports and the Spring Support artifacts to your pom.xml .
	JasperReports artifact
	Spring Support artifact

3. Add the jrxml template, the i18n files properties and images… to the resources folder of your Spring Boot project.

2.4. Generate PDF in Java
1. Create a Java service InvoiceService , we will use it to generate the PDF invoice.
OrderModel is a POJO object that holds all the data about the invoice, you can find it in Github .
2. Create a PDF File and initiate a FileOutputStream .
3. Load the JRXML template.
4. Fill the parameters and the DataSource.
5. Generate the PDF using the JasperReportsUtils of the Spring Support.
6. Call your service InvoiceService.generateInvoiceFor(...) with the proper values to generate the PDF.
7. If everything goes well the invoice as a PDF file will be generated.

Demo of the final version

Find the source code of this example in GitHub .

Software Craftsmanship, Stackextend author and Full Stack developer with 6+ years of experience in Java/Kotlin, Java EE, Angular and Hybris… I’m Passionate about Microservice architectures, Hexagonal architecture, Event Driven architecture, Event Sourcing and Domain Driven design (DDD)… Huge fan of Clean Code school, SOLID, GRASP principles, Design Patterns, TDD and BDD.
Share this:

This site uses Akismet to reduce spam. Learn how your comment data is processed .

most insightful tutorial on this topic! thanks

how to call deafault method our run method in commandline runner interface as rest controller in requestmapping

thx , just this method doesnt works on my eclipse , final JasperReport report = loadTemplate();

Comment ajouter le fichier. Jrxml dans sts, mon sts ne lut pas le fichier

The Render pdf (JasperReportsUtils) with Spring framework 5 doesn’t work more. How can I change ?

You are directly use JasperFillManager and JasperExportManager as shared below:
final JasperPrint jasperPrint = JasperFillManager.fillReport(report, parameters, new JREmptyDataSource()); JasperExportManager.exportReportToPdfFile(jasperPrint, pdfFile.getAbsolutePath());

How to load custom font in Jasper ?

You may use iReport or Jasper studio and install the fonts and generate their extensions and use them in your project.

I got this error
net.sf.jasperreports.engine.util.JRFontNotFoundException: Font “Arial Rounded MT Bold” is not available to the JVM. See the Javadoc for more details. at net.sf.jasperreports.engine.fonts.FontUtil.checkAwtFont(FontUtil.java:604) ~[jasperreports-6.6.0.jar:6.6.0] at net.sf.jasperreports.engine.fill.SimpleTextLineWrapper.loadFont(SimpleTextLineWrapper.java:384) ~[jasperreports-6.6.0.jar:6.6.0] at net.sf.jasperreports.engine.fill.SimpleTextLineWrapper.getGeneralFontInfo(SimpleTextLineWrapper.java:354) ~[jasperreports-6.6.0.jar:6.6.0] at net.sf.jasperreports.engine.fill.SimpleTextLineWrapper.createFontInfo(SimpleTextLineWrapper.java:294) ~[jasperreports-6.6.0.jar:6.6.0] at net.sf.jasperreports.engine.fill.SimpleTextLineWrapper.start(SimpleTextLineWrapper.java:256) ~[jasperreports-6.6.0.jar:6.6.0] at net.sf.jasperreports.engine.fill.TextMeasurer.measure(TextMeasurer.java:543) ~[jasperreports-6.6.0.jar:6.6.0] at net.sf.jasperreports.engine.fill.JRFillTextElement.chopTextElement(JRFillTextElement.java:665) ~[jasperreports-6.6.0.jar:6.6.0] at net.sf.jasperreports.engine.fill.JRFillTextField.prepare(JRFillTextField.java:784) ~[jasperreports-6.6.0.jar:6.6.0] at net.sf.jasperreports.engine.fill.JRFillElementContainer.prepareElements(JRFillElementContainer.java:542) ~[jasperreports-6.6.0.jar:6.6.0] at net.sf.jasperreports.engine.fill.JRFillFrame.prepare(JRFillFrame.java:241) ~[jasperreports-6.6.0.jar:6.6.0] at net.sf.jasperreports.engine.fill.JRFillElementContainer.prepareElements(JRFillElementContainer.java:542) ~[jasperreports-6.6.0.jar:6.6.0] at net.sf.jasperreports.engine.fill.JRFillBand.fill(JRFillBand.java:453) ~[jasperreports-6.6.0.jar:6.6.0] at net.sf.jasperreports.engine.fill.JRFillBand.fill(JRFillBand.java:428) ~[jasperreports-6.6.0.jar:6.6.0] at net.sf.jasperreports.engine.fill.JRVerticalFiller.fillBandNoOverflow(JRVerticalFiller.java:448) ~[jasperreports-6.6.0.jar:6.6.0] at net.sf.jasperreports.engine.fill.JRVerticalFiller.fillColumnHeader(JRVerticalFiller.java:496) ~[jasperreports-6.6.0.jar:6.6.0] at net.sf.jasperreports.engine.fill.JRVerticalFiller.fillReportStart(JRVerticalFiller.java:260) ~[jasperreports-6.6.0.jar:6.6.0] at net.sf.jasperreports.engine.fill.JRVerticalFiller.fillReport(JRVerticalFiller.java:110) ~[jasperreports-6.6.0.jar:6.6.0] at net.sf.jasperreports.engine.fill.JRBaseFiller.fill(JRBaseFiller.java:615) ~[jasperreports-6.6.0.jar:6.6.0] at net.sf.jasperreports.engine.fill.BaseReportFiller.fill(BaseReportFiller.java:432) ~[jasperreports-6.6.0.jar:6.6.0] at net.sf.jasperreports.engine.fill.JRFillSubreport.fillSubreport(JRFillSubreport.java:818) ~[jasperreports-6.6.0.jar:6.6.0] at net.sf.jasperreports.engine.fill.JRSubreportRunnable.run(JRSubreportRunnable.java:61) ~[jasperreports-6.6.0.jar:6.6.0] at net.sf.jasperreports.engine.fill.AbstractThreadSubreportRunner.run(AbstractThreadSubreportRunner.java:221) ~[jasperreports-6.6.0.jar:6.6.0] at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) ~[na:1.8.0_191] at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) ~[na:1.8.0_191] at java.lang.Thread.run(Thread.java:748) [na:1.8.0_191]

Download and place the font in jre/lib/fonts folder to fix.

How to attach new Jasper report without modifying Spring Boot application to call new jasper repot. I mean to make the Report dynamic ,
Recent Posts
	Upgrade Log4j version on Sap Hybris Commerce to fix vulnerability
	Difference between Impex decorator vs translator in Hybris
	Tanuki Wrapper and SAP Hybris
	JDK-14 Exception Details Feature : Add More Details To Your NullPointerException
	json-server : Mock DB + API Server for testing and development
	Files customization in SAP Hybris (Add dependency to platform + Customize setantenv.sh)

You must be logged in to post a comment.
	PyQt5 ebook
	Tkinter ebook
	SQLite Python
	wxPython ebook
	Windows API ebook
	Java Swing ebook
	Java games ebook
	MySQL Java ebook

Creating PDF report in Spring Boot
last modified August 2, 2023
In this article we shows how to serve PDF file in Spring Boot web application. The report is generated with iText library.
The openpdf is an open source library for creating and manipulating PDF files in Java.
Spring is a Java application framework for developing Java enterprise applications. It also helps integrate various enterprise components. Spring Boot makes it easy to create Spring-powered, production-grade applications and services with minimum setup requirements.
H2 is an open source relational database management system implemented entirely in Java. It can be embedded in Java applications or run in the client-server mode. It has small footprint and is easy to deploy and install. It contains a browser based console application for viewing and editing datatabase tables.
Spring Data JPA is part of the umbrella Spring Data project that makes it easier to implement JPA based repositories. Spring Data JPA uses JPA to store data in a relational database. It can create repository implementations automatically, at runtime, from a repository interface.
Spring Boot Serve PDF example
The following Spring Boot application loads data from a database table and produces a PDF report from it with iText library. It uses ResponseEntity and InputStreamResource to send PDF data to the client.
This is the project structure.
This is the Gradle build file.
Spring Boot starters are a set of useful dependency descriptors which greatly simplify the application configuration. The spring-boot-starter-web is a starter for building web applications with Spring MVC. It uses Tomcat as the default embedded container. The spring-boot-starter-data-jpa is a starter for using Spring Data JPA with Hibernate.
In addition, we include dependencies for H2 database and openpdf library.
This is the City entity. Each entity must have at least two annotations defined: @Entity and @Id . The default value of the spring.jpa.hibernate.ddl-auto property is create-drop which means that Hibernate will create the table schema from this entity.
The @Entity annotation specifies that the class is an entity and is mapped to a database table. The @Table entity specifies the name of the database table to be used for mapping.
The @Id annotation specifies the primary key of an entity and the @GeneratedValue provides for the specification of generation strategies for the values of primary keys.
The application.yml is the main Spring Boot configuration file. With the banner-mode property we turn off the Spring banner. The spring framework logging is set to ERROR. We inform that we use H2 database.
The schema is automatically created by Hibernate; later, the import.sql file is executed to fill the table with data.
By extending from the Spring CrudRepository , we have some methods for our data repository implemented, including findAll and findOne . This way we do not have to write a lot of boilerplate code.
ICityService provides a contract method to get all cities from the database.
CityService contains the implementation of the findAll method. We use repository to retrieve data from the database.
CityRepository is injected.
The findAll method of the repository returns the list of cities.
The citiesReport method returns the generated PDF report. The Resource interface abstracts access to low-level resources; InputStreamResource is its implementation for stream resources.
We inject ICityService object into the attribute. The service object is used to retrieve data from the database.
We find all cities with the findAll method.
The GeneratePdfReport.citiesReport generates PDF file from the list of cities using iText library.
By setting the Content-Disposition to inline , the PDF file is shown directly in browser.
We create a response with ResponseEntity . We specify the headers, content type, and body. The content type is MediaType.APPLICATION_PDF . The body is an InputStreamResource .
GeneratePdfReport creates PDF file from the provided data.
The data will be written to ByteArrayOutputStream .
We put our data in a table; for this, we have the PdfPTable class. The table has three columns: Id, Name, and Population.
For the table header, we use bold Helvetica font.
The data is placed inside table cells, represented by PdfPCell . The text is horizontally aligned using the setHorizontalAlignment method.
With PdfWriter , the document is written to the ByteArrayOutputStream .
The table is inserted into the PDF document.
In order for the data to be written to the ByteArrayOutputStream , the document must be closed.
In the end, the data is returned as ByteArrayInputStream .
The Application sets up the Spring Boot application.
We start Spring Boot application.
We navigate to http://localhost:8080/pdfreport to generate the report.
In this article we have shown how to send a generated PDF file back to the client. The PDF report was generated with iText and the data came an H2 database. We used Spring Data JPA to access data.
My name is Jan Bodnar and I am a passionate programmer with many years of programming experience. I have been writing programming articles since 2007. So far, I have written over 1400 articles and 8 e-books. I have over eight years of experience in teaching programming.
List all Spring Boot tutorials .
How to generate PDF documents in Java
Wow. It had been a while since I hadn’t blogged.
This post will be short, and maybe obvious to you if you have some Java experience already.
I do have some experience, and in several past projects, I have had to generate printable documents, i.e. PDF files.
The first tool I used to do that was Jasper Reports . I didn’t really liked it. The documentation is scarce, you have to learn a lot of concepts and use a special IDE to design the reports using drag n’ drop. It also had a lot of dependencies, sometimes outdated. My feeling is that it certainly has its uses for large or complex documents that must have a good layout, but when you have to generate simple documents now and then, it’s overkill.
On another project, I tried something else: Eclipse BIRT . The experience was similar, only a bit worse.
All this time, I knew about a lower-level library, that, by the way, Jasper Reports and BIRT both seem to use under the scene to actually generate the PDF documents: iText . But for some reason (maybe it was true at the time), I always thought it was too low-level to be used directly.
I recently revisited that assumption, and I was very wrong.
iText actually has a very nice fluent DSL to generate documents in a very simple way. No need for any specific IDE. And the way to think about documents is very similar to the way you think about HTML pages: you compose them using divs, paragraphs, images, tables, all having borders, font styles, margins, etc. It’s really easy to get started with the API and discover what you can do with it.
Here’s a small complete example (in Kotlin, but the code would be very similar in Java):
And here’s a picture of the generated document:

What can be cumbersome, compared to editing HTML pages, is to view the result of the changes you’re applying. I solve this with a unit test that generates a temporary file and opens it. Did you know that Java has a Desktop class allowing to open files with the default application associated to the file type (just like when you double click on a file in the file explorer)?

Become a Ninja with Angular

Become a Ninja with Vue 3

4-7/03 à distance
25-28/03 à distance
19-22/02 à distance
	Les archives
	Les catégories

Suivez-nous
	Sur Twitter
	← Précédent
	Suivant →

	Apache PDFBox
	Mailing Lists
	Issue Tracker
	Project Team
	Documentation
	Migration Guide
	Getting Started
	Dependencies
	Command-Line Tools
	API Docs  via javadoc.io
	Document Encryption
	Development
	Building from Source
	Coding Conventions
	Update the Website
	External Links
	Apache Software Foundation
	Sponsorship

Apache PDFBox ® - A Java PDF Library
The Apache PDFBox ® library is an open source Java tool for working with PDF documents. This project allows creation of new PDF documents, manipulation of existing documents and the ability to extract content from documents. Apache PDFBox also includes several command-line utilities. Apache PDFBox is published under the Apache License v2.0.
Apache PDFBox 3.0.1 released 2023-11-30
The Apache PDFBox community is pleased to announce the release of Apache PDFBox version 3.0.1. It is available for download at:
https://pdfbox.apache.org/download.html
See the full release notes for details about this release.
The Migration Guide shall give users coming from PDFBox 2.0.x an overview about things to look at when switching over. More details to come.
Getting Help
To get help on using PDFBox, please Subscribe to the Users Mailing List and post your questions there. We're happy to help.
The project is a volunteer effort and we're always looking for interested people to help us improve PDFBox. There are a multitude of ways that you can help us depending on your skills. Subscribe to the Mailing Lists and find out how you can help.
Extract Text
Extract Unicode text from PDF files.
Split & Merge
Split a single PDF into many files or merge multiple PDF files.
Extract data from PDF forms or fill a PDF form.
Validate PDF files against the PDF/A-1b standard.
Print a PDF file using the standard Java printing API.
Save as Image
Save PDFs as image files, such as PNG or JPEG.
Create PDFs
Create a PDF from scratch, with embedded fonts and images.
Digitally sign PDF files.
Apache PDFBox 2.0.30 released 2023-11-04
The Apache PDFBox community is pleased to announce the release of Apache PDFBox version 2.0.30. It is available for download at:
Apache PDFBox 3.0.0 released 2023-08-17
The Apache PDFBox community is pleased to announce the release of Apache PDFBox version 3.0.0. It is available for download at:
Apache PDFBox 3.0.0-beta1 released 2023-07-14
The Apache PDFBox community is pleased to announce the first beta release of Apache PDFBox version 3.0.0. It is available for download at:
Apache PDFBox 2.0.29 released 2023-07-01
The Apache PDFBox community is pleased to announce the release of Apache PDFBox version 2.0.29. It is available for download at:
Apache PDFBox 2.0.28 released 2023-04-13
The Apache PDFBox community is pleased to announce the release of Apache PDFBox version 2.0.28. It is available for download at:

	Manage Email Subscriptions
	How to Post to DZone
	Article Submission Guidelines
	Manage My Drafts

Modernizing APIs : Share your thoughts on GraphQL, AI, microservices, automation , and more for our April report (+ enter a raffle for $250!).
DZone Research Report : A look at our developer audience, their tech stacks, and topics and tools they're exploring.
Getting Started With Large Language Models : A guide for both novices and seasoned practitioners to unlock the power of language models.
Managing API integrations : Assess your use case and needs — plus learn patterns for the design, build, and maintenance of your integrations.
	How to Rasterize PDFs in Java
	How To Create and Edit PDF Annotations in Java
	How To Add, Remove, or Rotate Pages in a PDF Document Using Java
	How to Convert a PDF to Text (TXT) Using Java
	Choosing the Right Path Among a Plethora of Mobile App Development Methodologies
	Creating a Hybrid Disaster Recovery Solution Utilizing Availability Group and Log-Shipping
	How Inverted Index Accelerates Text Searches by 40 Times
	Mastering Test Code Quality Assurance

Template-Based PDF Document Generation in Java
Explore this guide to integrating edocgen with your java-based applications to generate pdf documents from json/xml/database..

Join the DZone community and get the full member experience.
In my previous article, I wrote about how we can seamlessly generate template-based documents in our JavaScript application using EDocGen.
As a Java developer, I have worked on creating backend applications for e-commerce and healthcare enterprises where the requirement for document generation is vast. And they have mostly done in java spring boot application. This made me think, why not write an article on the Template-Based PDF Document Generation in Java?
This is part II of my article " Template-Based PDF Document Generation in JavaScript ."
Let's get into the project. I'm going to write a Spring Boot application.
Requirements
This is the requirement I have taken for demonstration and I kept them simple enough.
	The front end calls our backend endpoint with the input parameters and template ID.
	Document generation should happen behind the screen and the front end should receive an immediate acknowledgment.
	When the document is ready, it should be sent to the user over email. The mail id should be sent to the server as an optional query parameter.

Project Setup
When setting up the spring boot application, the spring initializer comes in handy.
Step 1:
	Go to the spring initializr page .
	Configure project name and package details.
	Spring starter web
	Lombok: Annotations for boilerplate code

	Import the project into your IDE and soon after the dependencies with start downloading. If not, you can kick it using MVN install.
	XML org.apache.commons commons-collections4 4.4 " data-lang="application/xml"> <dependency> <groupId>org.apache.commons</groupId> <artifactId>commons-collections4</artifactId> <version>4.4</version> </dependency>
	Once dependencies are loaded. Run the Application.java file to start the web server.

Now, our project base setup is ready.
Packages and Classes
	DocumentController - Handle All document-related API calls
	LoginService - Handle token generation for eDocGen
	GeneralDocumentService - Handles document-related services from DocumentController
	EmailService - Handles sending emails to the user
	Other services, DTO and exceptions can be found here.

In order to generate the documents, we need an access token to hit the eDocGen's API. And I'm going to cache the token for 20 mins and regenerate it again.
You should be asking me What kind of cache I'm using. I'm gonna use an in-memory cache using PassiveExpireMap from Apache's common-collections4 . We can use EH cache (in-memory) or Radis (Distributed) and there are broadly used. But PassiveExpireMap is simple to use.
This process has 2 steps.
	Token generation
	Token cache

Token Generation
Login service is responsible for token generation. As per the single-responsibility principle, the login service is only responsible for token generation.
Log in with eDocGen.
Request Body
Code sample.
The TokenCache has been written to consume LoginService . TokenCache is only responsible for caching the token. When the token is expired, it needs to call LoginService to re-generate the token.
HeaderUtils
Every time we hit the API, we need to attach a set of headers to the request like an access token, and content type.
HeaderUtils takes care of token generation from the token cache and attaching other parameters.
Document Templates
Basically, this article is about generating documents based on pre-defined templates. These templates should follow the rules defined by eDocGen. Let me explain them at a high level.
	Dynamic Text fields: When we have the text fields that need to be shown in the document, it needs to be included in the template enclosed by {} . For example, I need to print the name of the person in the document, {full_name} which needs to be included in the template.
	Tables: A table is used for displaying the list of rows/records. It starts with <#listname> and ends with </listname> .
	Conditional Data: There are times we need to show the data based on the user, where conditions can be used in the documents. The syntax is {#fieldnmae="data"} followed by {/} to mark the end of the conditional statement. For example:

The users from India will see the price calculated in INR, whereas the users from the US will see the price calculated in USD.
Mathematical Formula:
eDocGen provides support for all kinds of mathematical operations like +, -, *, / and priorities can be defined with () .
For example:
{((price_1*qauntity_1)+tax_1)+((price_2*qauntity_2)+tax_2)}
You can find more details here .
I have created one template and uploaded it to eDocGen. I'm going to use this template for our demo.
Data to Document Generation
Our requirement is that we need an API that accepts JSON or XML data files and processes the request asynchronously and emails the generated document to the given email.
Let's start with the service layer and then the controller layer.
Document Service
Document Service will be handing the input parameters from the controller. The data source for the input data could be either a file or DB Parameter. We will have two branches in code: one will handle the DB Parameters and the other will handle the input file.
For the document generation, we use the eDocGen's /api/v1/document/generate/bulk API.
1. DocumentGeneration - For JSON/XML Files
For document generation with JSON/XML files as the data sources, we will be using form data.
Code Implementation:
2. Document Generation - For Database Query as Source
This is much similar to the file as input data, but this will have a different set of parameters.
Now you should be asking about the role of the processOutput method.
It basically takes the name of the file and searches whether the file is generated or not in eDocGen. Once documents are generated successfully, it triggers the send the file over email API. The emailing functionality has a dedicated service called EmailService.
For searching the file we will be using eDocGen's /api/v1/output/name/{output_file_name}
When the file is successfully generated the API returns the output-id of the generated document which will be used for the sending file over email.
Email Service
Email service takes the output ID of the document and the email id to which the document needs to be sent.
For sending documents over email, we will be using /api/v1/output/email from eDocGen.
Code implementation:
Document Controller:
Great. Now we have our backend logic. Let's expose the logic with an API.
The source for the document generation can be either a JSON or XML file or can be a database query with connection details, so we need to design a controller that accepts both JSON(for DB parameters) and FormData (for file upload).
Code implementation:
JSON to Document
Now we are ready to test our application.
I'm hitting the /document/{document_id}/{email} API we have created now with a JSON file as input data.
Please take a look at the postman configuration.

After hitting the API, we instantly got the response and the file is being processed in the background.
The input JSON for your reference:
Once the file is processed and the final documents are generated by eDocGen, we get the attachment sent via email.

XML to Document
Now let's try with XML as an input file with the same data and postman configuration.

And we got the files sent via email by eDocGen.
That brings us to the end of this article. Hope you enjoyed reading it.
Opinions expressed by DZone contributors are their own.
Partner Resources
	About DZone
	Send feedback
	Advertise with DZone

CONTRIBUTE ON DZONE
	Become a Contributor
	Core Program
	Visit the Writers' Zone
	Terms of Service
	Privacy Policy
	3343 Perimeter Hill Drive
	Nashville, TN 37211
	

Let's be friends:
Creating PDF Reports with iText 7 in Java
I have been using React-pdf for PDF report generation for quite sometime in one of the React project. It is a nice library for certain size of reports, as content is prepared as React components and styling becomes way easier. However if the page content is generated dynamically and there is no certainty in number of pages it might cause serious problems in the frontend side. I ended up getting my browser frozen or memory limit exceed errors. So for the huge reports I started looking for Java modules to handle it in the backend server, and it did not take me much to come across iText 7 .
First thing caught my attention was html2pdf module and I gave it a try. Html content can be provided as a string or a file.
Resulting PDF:

If you have a certain design in Html or you would like to generate Html with thymeleaf , this module could be a good fit for your case.
In my scenario, each item is retrieved from database and inserted to the report, and its images are also placed. The length of the text in the fields and the number of images differs in each item. I decided to use iText core module and APIs to build up a report rather than generating html and converting to pdf. So let's have a look at the building blocks of core API.
Basic Components
We can add the dependency as follows:
PDF Document
PDF files are represented by PdfDocument class and it has a wrapper called Document . Instantiating PdfDocument class can be done by providing the PdfReader , or PdfWriter in the constructor. As we intent to write to file we can instantiate with a PdfWriter which wraps the OutputStream or destination File .
We are going to add the components that we want to insert to the Document object by using the following method:
Paragraph class is a container for textual information. It can be filled by sending string to constructor or added text by add method. It has many useful elements related to the text or the paragraph view.

AreaBreak can be used when we would like to start some element at the beginning of the next page. So the remaining part of the current page will be left empty and following elements will start from the next page.

We can insert a List as follows:

Table class can be instantiated with providing either number of columns or array of column length. We can insert Cell objects to a table and a cell may contain any IBlockElement object.

Table and Cell classes contains many methods related to styling such as borders, alignments, background options, margin/padding settings etc.
Image class is used to insert an image to pdf file. It might be created by a local file, remote url or stream.
ImageDataFactory class may create an image instance from local path or remote URL. Image class has many styling methods as other components.

Exporting Reports With REST APIs
As a solution to my scenario, first of all, I prepared some general styling for each report type so that I can use it for different entity types. I created an AbstractPdfDocument in order to re-use the common functionality, for example having title and logo at the top of each page, or some common functionality as inserting remote images, or tables. I achieved placing logo and title at the top of each page by registering an EventHandler to the Document class. So the components are listed as follows:
ImageDownloader
As the images are going to be downloaded from remote URLs, I decided to create some ImageDownloader service to download images with a thread pool in parallel.
TableHeaderEventHandler
This event handler is used to add a table with logo and title at the top of each page and it is code is as follows:
AbstractPdfDocument
AbstractPdfDocument contains the common functionality as adding header to pages, creation and destruction of Document object, and helper methods as inserting images, tables, titles etc.
This class uses Factory Method design pattern with its writeData abstract method. The inheritors of this class has to implement this method to lead the insertion of actual content. For each entity the content is inserted differently, and by implementing this method the concrete classes should define how it should be inserted. And also, child classes might use the helper methods for common tasks.
ItemPdfDocument
ItemPdfDocument is the concrete class which extends the AbstractPdfDocument and implements the writeData method. It handles inserting item details and after uses helper method insertImageTable of its parent class.
So introducing new reports for each entity type is easy, we can create a new concrete class and show how to insert the content in the writeData method.
An example report generated by this document looks like as follows:

At the controller I create an endpoint to retrieve the generated pdf file. At the first attempt I returned the byte array from output stream however I realized that might cause corrupted PDF files at the client side. So I encode it with base64 and client should decode it before saving the file.
Subscribe to our newsletter
Get the latest posts delivered right to your inbox.

Now check your inbox and click the link to confirm your subscription.
Please enter a valid email address
Oops! There was an error sending the email, please try later.
Cemal Turkoglu
Recommended for you.

Server Sent Events with Spring Boot and ReactJS

Centralized Logging and Monitoring with Elastic Stack

Running ReactJS + Spring Boot Application with Docker Compose
No results for your search, please try with something else.
Generate Reports from JSON Data in Java
JSON is a formatted and readable data interchange format to transmit data with attributes. However, the large data in JSON format is not very presentable and easily understandable. We mostly need to convert the large JSON data into a presentable format. This article will guide you to convert JSON data into PDF and MS Word reports in Java using a simple template.
Report Generation Java API #
I will be using GroupDocs.Assembly for Java API to generate reports from the provided JSON data and template in DOCX and TXT format. It also supports automatic report generation in multiple formats from CSV, XML data sources.
Download or Configure #
You may download the JAR file from the downloads section , or just get the repository and dependency configurations for the pom.xml of your maven-based Java applications.
Generate PDF Report from JSON Data in Java #
Let’s quickly jumps to the steps that will lead you to convert JSON data into the formatted PDF report.
	Get JSON data source
	Define template according to JSON data
	Provide JSON data source and template to simple java code for report generation.

JSON Data #
For the PDF report generation, I will be using the following sample JSON data of managers and their respective clients and details.
Define the following template in TXT or DOCX format. This will allow to iterate over Managers and their respective Clients and their details. After that, you can jump to code for report generation.
Java Steps to Generate PDF Report from JSON #
Following steps and Java code allows automatic conversion of JSON data into PDF report as per defined template.
	Define JSON data file, .txt template file, and PDF output report file paths.
	Instantiate JsonDataSoure with JSON data file.
	Create DataSourceInfo with defined JsonDataSource.
	Call the assembleDocument method of the DocumentAssembler class to generate the PDF report from the provided JSON data and defined template.

Generate MS Word Report from JSON data in Java #
Similarly, like the above PDF report generation, you can easily create the DOCX report by:
	Defining the same template in DOCX format.
	Set the output report document format as DOCX.
	The rest of the code will remain the same to generate MS Word DOCX report from the JSON data.

For more details, options, and examples, you can go through the documentation and GitHub repository. In case of further queries and ambiguities, contact the free support on the forum .
Conclusion #
I hope you will feel comfortable building your own Java-based application to generate reports by converting JSON data to PDF format. Similarly, you can generate reports in other formats like DOCX using other data sources like CSV and XML.
	Generate Reports from JSON Data in C#

	Development
	Data Warehouse & BI
	IT Architecture & Cloud Computing
	Reporting tools
	JasperReports
	Generate a PDF File with JasperReports and Java

This tutorial will explain you how to Generate a PDF File from Java using Jasper Reports Library.

Java Tutorial
Control statements, java object class, java inheritance, java polymorphism, java abstraction, java encapsulation, java oops misc.

	Send your Feedback to

Help Others, Please Share

Learn Latest Tutorials

Transact-SQL

Reinforcement Learning

R Programming

React Native

Python Design Patterns

Python Pillow

Python Turtle

Preparation

Verbal Ability

Interview Questions

Company Questions
Trending Technologies

Artificial Intelligence

Cloud Computing

Data Science

Machine Learning

B.Tech / MCA

Data Structures

Operating System

Computer Network

Compiler Design

Computer Organization

Discrete Mathematics

Ethical Hacking

Computer Graphics

Software Engineering

Web Technology

Cyber Security

C Programming

Control System

Data Mining

Data Warehouse

404 Not found

184

IMAGES
	Create PDF Report In Java using Jasper Reports

	Pdf Report Generation in Java Example

	Pdf Report Generation in Java Example

	How to Generate PDF Reports from HTML in Java

	PDF & Word Reports from CSV in Java

	Java prog#95. Reports : Itext :how to show the pdf report in landscape in java

VIDEO
	Write Java to support PDF export on Android!

	pdf.js handling

	ServiceNow Reports Session 12 : How customise PDF reports in servicenow

	How Can I Print a Custom PDF Report Using PLSQL Dynamic Region in Oracle Apex 20.1?

	How to Encrypt and Decrypt PDF Documents in Java

	Practical PDF Parsing in Java: Making Reflection Your Compliant Minion

COMMENTS
	Creating PDF Files in Java
1. Introduction In this quick tutorial, we'll focus on creating PDF documents from scratch based on the iText and PdfBox libraries. 2. Maven Dependencies First, we need to include the following Maven dependencies in our project:

	How to Generate Dynamic PDF Report using Spring Boot?
java pdf by devs5003 - August 19, 2020 3 Last Updated on January 11th, 2024 Almost every client expects the report of data as it is in the database. The most popular & user-friendly reports are PDF & Excel. Here, in this article, we will learn how to generate dynamic PDF report.

	itext Tutorial: Convert Data To PDF Report Using Java & iText
iText is the tool to generate a consolidated report where we can manipulate bulk data into the single form of entity that holds meaningful information. iText is a Java PDF library used for creating and manipulating PDF documents by developing Java programs. Some of the features of the iText library include generating interactive PDF documents ...

	Java
In this iText tutorial, we are writing various code examples to read a PDF file and write a PDF file. iText library helps in dynamically generating the .pdf files from Java applications.. The given code examples are categorized into multiple sections based on the functionality they achieve. With each example, I have attached a screenshot of the generated PDF file to visualize what exactly the ...

	Creating PDF with Java and iText
3. Create a PDF. Create a new Java project "de.vogella.itext.write" with the package "de.vogella.itext.write". Create a folder "lib" and put the iText library (jar file) into this folder. Add the jar to your classpath. Create the following class "FirstPdf.java" . I assume that the code is pretty much self-explaining.

	Generate PDF document using JasperReports and Spring boot
Overview Almost every JAVA project need to generate PDF documents for its users, for example: For an e-commerce project, we generate Invoice, receipt and return… For a supervision and monitoring application, we generate reports. The JasperReports is one of the best Java libraries for generating PDF documents.

	Creating PDF report in Spring Boot
Creating PDF report in Spring Boot last modified August 2, 2023 In this article we shows how to serve PDF file in Spring Boot web application. The report is generated with iText library. The openpdf is an open source library for creating and manipulating PDF files in Java.

	How to generate PDF documents in Java
How to generate PDF documents in Java Wow. It had been a while since I hadn't blogged. This post will be short, and maybe obvious to you if you have some Java experience already. I do have some experience, and in several past projects, I have had to generate printable documents, i.e. PDF files. The first tool I used to do that was Jasper Reports.

	Apache PDFBox
The Apache PDFBox™ library is an open source Java tool for working with PDF documents. This project allows creation of new PDF documents, manipulation of existing documents and the ability to extract content from documents. Apache PDFBox also includes several command-line utilities. Apache PDFBox is published under the Apache License v2.0.

	Template-based PDF Document Generation in Java
Step 1: Go to the spring initializr page . Configure project name and package details. Add: Spring starter web Lombok: Annotations for boilerplate code Generate

	eclipse
3 Answers Sorted by: 4 iText is great for generating all kinds of PDFs, but If you're going to do reports, then I have to recommend JasperReports. Also, you can use iReport to simplify the design of your jasper reports. Share Follow edited Mar 27, 2011 at 3:17

	Creating PDF Reports with iText 7 in Java
Running ReactJS + Spring Boot Application with …. Creating and exporting pdf reports in java rest API using itext 7. Inserting image, table, page header, and logo. Learning Itext 7 basic java components.

	JasperReports with Spring
1. Overview JasperReports is an open source reporting library that enables users to create pixel-perfect reports that can be printed or exported in many formats including PDF, HTML, and XLS. In this article, we'll explore its key features and classes, and implement examples to showcase its capabilities. 2. Maven Dependency

	Generate PDF Report from JSON Data in Java
Similarly, like the above PDF report generation, you can easily create the DOCX report by: Defining the same template in DOCX format. Set the output report document format as DOCX. The rest of the code will remain the same to generate MS Word DOCX report from the JSON data. For more details, options, and examples, you can go through the ...

	Get Information About a PDF in Java
2.3. Getting the PDF Metadata. Let's now have a look at how we can get metadata of the document. We'll use the getInfo () method. This method can get the information of the file, like title, author, creation date, creator, producer, and so on. Let's add the getInfo () method to our PdfInfoIText class:

	Generate PDF File from Java using Jasper Reports Library
This tutorial will explain you how to Generate a PDF File from Java using Jasper Reports Library. Generate a PDF File with JasperReports and Java Creating a Jasper Report (using grouping or not) is not a difficult task (for this we can use Jaspersoft Studio). More complicated could be to run that report from a Java EE Application.

	Java Reporting Tools: a Comparison
1. Overview When we talk about Reporting tools, a lot of software covers this area. However, most of them are full-fledged Business Intelligence platforms or Cloud services. But, what happens if we just want to add some reporting features to our application as a library? We will review here some Java reporting tools well suited for this purpose.

	Jasper Report Library, PDF Report and Java
Jasper Report Library, PDF Report and Java Rajendra Kumar Yadav, M.Sc (CS) · Follow 5 min read · Dec 17, 2019 I am using Eclipse with Jasper Report Plugin and Maven for Automation...

	Java Create PDF
iText PDF Clown BFO PJX PDFjet jPOD ICEpdf The first two libraries are more popular and widely used by developers. So, in this section, we will discuss only Apache PDFBox, iText, and PDF Clown library. Apache PDFBox It is an open-source library that can be used while dealing with PDF documents. It includes several command-line utilities.

	(PDF) Final Report: Java Programming Language. A Simple project to Draw
In this report, we designed and developed a simple painter project used to enable user to draw any shape and any integrated graphic with any color using FreeHand (move the mouse using your hand...

	Generate PDF File from Java using Jasper Reports Library
Here represent quite notes in order to generate a PDF file using JasperReports and Java EE Application. When your Report belongs done (the get are included) for your report, set your "Default Data Adapter" somewhere on the disk (where the adapter defining wish stay on the server). Save the .jrxml file and compile he from "Project" -> "Build All ...

	Latest Articles
	how can i write my speech
	precision 1 toric
	mla format cite textbook
	how to make a good elevator pitch
	autobiography books celebrities
	simple math problem solving for grade 3
	write newspaper report on simon commission
	how to fix network problem on hp laptop
	reporting fund uk tax
	how to improve your problem solving skill
	famous books 1900s
	how to make presentation in laptop
	books fiction 2020
	5 traditional review of literature
	the lit egham
	the full report
	job interview books reddit
	writing workshop zurich
	problem and solution 4th grade worksheet
	solved problems on probability and statistics pdf

	

© 2024 CheerUp. All rights reserved.
Sitemap

	case study
	cover letter
	creative writing
	presentation
	problem solving
	rewiew prompts
	websites tips

