Chapter 3: Research Methods

This study seeks to provide insight into the process of conducting community-based research.  In order to do so, the study utilizes a qualitative case study approach to examine the methodology of community-based research. Two contrasting cases of CBR are described and analyzed in order to understand the issues that arise when conducting CBR, the factors that facilitate or hinder the process, and the benefits of conducting CBR.  Finally, these contrasting cases are considered to determine what this study can contribute to the field of CBR.  This chapter details case study methodology as well as multiple case design.  It also describes the methodology of community-based research, the participants of the study, data collection and analysis, and issues around credibility, including my own subjectivities that may have influenced the research. 

Methodological Framework

In order to explore the collaborative process of conducting community-based research, this study utilizes a qualitative case study approach.  Case studies can be particularly useful for studying a process, program or individual in an in-depth, holistic way that allows for deep understanding (Merriam, 1998).  As Merriam points out,

A case study design is employed to gain an in-depth understanding of the situation and meaning for those involved.  The interest is in process rather than outcomes, in context rather than a specific variable, in discovery rather than confirmation (p. 19).

There are some differences in how researchers define case study.  Some researchers think of case study as the object to be studied (Stake, 2000), while others define case study as a process of investigation (Creswell, 2002).  Creswell defines case study as "an in-depth exploration of a bounded system (e.g., an activity, event, process, or individuals) based on extensive data collection" (p. 485).  Creswell recommends case study as a methodology if the problem to be studied "relates to developing an in-depth understanding of a 'case' or bounded system" (p. 496) and if the purpose is to understand "an event, activity, process, or one or more individuals" (p. 496).  Patton (1990) suggests that case studies are valuable in creating deep understanding of particular people, problems or situations in comprehensive ways.  

This study is particularly suitable for a case study design because it is a bounded system, it is contextual, and it is a study of process (Merriam, 1998).  Like Creswell (2002), Stake (2000) defines case study as the study of a "bounded system" (p. 436).  According to Creswell (2002), "'Bounded' means that the case is separated out for research in terms of time, place, or some physical boundaries" (p. 485).  In other words, it is possible to create limits around the object to be studied (Merriam, 1998).  A case study can focus on a variety of different things.  A case could be an individual, a group, a school, a community (Merriam, 1998), or a case could also include "a program, events, or activities" (Creswell, 2002, p. 485).  The bounded systems in my contrasting case studies are my collaboration with the Coalition for Schools [2] in a western city and my collaboration with community members in a small, rural, mountain community to carry out community-based research.  The boundaries of these two cases are determined by the people and groups that I collaborate with in the CBR process.  

I chose a case study design because it involves "detailed, in-depth data collection involving multiple sources of information rich in context" (Creswell, 1998, p. 61).  Context is a key factor.  According to Merriam (1998), in focusing on a particular phenomenon in a case study, it is impossible to separate the phenomenon from its context.  However, in this study, it is important that the context is understood as part of the process.  As Yin (2003) says, "you would use the case study method because you deliberately wanted to cover contextual conditions-believing that they might be highly pertinent to your phenomenon of study" (p. 13).  Thus, using a case study approach allows for the possibility of gaining significant knowledge about the process of conducting community-based research in particular contexts.   According to Sanders (1981), "Case studies help us to understand processes of events, projects, and programs and to discover context characteristics that will shed light on an issue or object" (p. 44). 

The two case studies each took place over an extended period of time.  The first CBR project lasted nine months, and the second CBR project lasted eight months.  I worked with my collaborative partners to define research problems and questions, develop research designs, collect data, and analyze data.  However, this study does not focus on the data that I collected as part of that CBR work.  Instead, this study focuses on the process of the collaborative experience.  Since the study focuses primarily on the procedures of conducting community-based research, the study is considered a process study.  According to Patton (1990), when carrying out a process study, the "focus is on how something happens rather than on the outcomes or results obtained" (p.94).  And, as Merriam (1998) points out, "Case study is a particularly suitable design if you are interested in process" (p.33).  Therefore, case study was chosen since it allows for detailed monitoring of the collaborative process (Merriam, 1998). 

Types of Case Studies

Stake (2000) delineates three types of case studies: intrinsic, instrumental, and collective.  Intrinsic case studies focus on a case that is unusual and is of particular interest to the researcher (Creswell, 1998; Stake, 2000).  The intent is not to build theory (Stake, 2000).  An instrumental case study is pursued in order to provide insight about a particular issue that may be generalizable (Creswell, 2002).  The primary purpose of an instrumental case study is to help advance understanding (Stake, 2000).  The collective case study encompasses more than one case "in order to investigate a phenomenon, population, or general condition" (Stake, 2000, p. 437).  Since the purpose is to help advance understanding, a collective case study is a grouping of instrumental case studies (Stake, 2000).  Using a collective case study approach can allow for the possibility of stronger interpretation and "perhaps better theorizing" (Stake, 2000, p. 437). 

Though Stake (2000) uses the terminology "collective case study," this approach is known by other names such as, multiple case studies, cross-case studies, comparative case studies, and contrasting cases (Merriam, 1998; Yin, 2003).  With multiple case studies, data are analyzed for insights both within each case and across cases (Merriam, 1998).  Yin (2003) points out that multiple cases may be chosen to try to replicate insights that you find within individuals cases or to represent contrasting situations.  Regardless of whether the purpose is replication or contrast, multiple case studies are "considered more compelling, and the overall study is therefore regarded as more robust" (Yin, 2003, p. 46). 

When this study was first proposed, the original intent was to pursue a single case study of my experience of collaboration in carrying out a community-based research project.  After completing my work with the Coalition for Schools, I felt dissatisfied with the experience in that I did not view it to be a success.  Instead of focusing on that one experience, I decided to pursue another research option in the small town in which I live in order to have a contrasting experience to write about.  It turned out that the project I completed in my small town was more successful, therefore allowing me to present contrasting cases.  Since this study seeks to add insight to the field of methodology in CBR, it is important to understand the factors that impact the process of collaboration and the factors that support successful collaborations (Strand et al., 2003a). 

Methodology of Community-Based Research

Since the purpose of this study is to explore the process of carrying out CBR, it is important to understand the methodology of community-based research.  As mentioned in chapter two, community-based research is not as concerned with methods as it is with methodology (Hills & Mullett, 2000; Strand et al., 2003a).  Either quantitative or qualitative methods may be used; the choice depends on what would obtain the most useful data for the community (Greenwood & Levin, 2000).  The methodology of CBR is guided by the three principles outlined by Strand et al. (2003a): 1) collaboration, 2) validation of the knowledge of community members and the multiple ways of collecting and distributing information, and 3) "social action and social change for the purpose of achieving social justice" (p. 8).  Though community-based research is not limited to specific methods, it does follow the typical stages of research that most traditional academic research would follow: defining the research question, developing a research design, collecting data, analyzing data, and writing up the results.  The difference is that the researcher collaborates closely with the community throughout the research process (Strand et al., 2003a).  The community is involved in determining the problem and research questions, creating the research design, collecting data, analyzing data, and creating a presentation of findings (Strand et al., 2003a).  The researcher also continues to play a role in the final stage by assisting with the enactment of solutions to create change (Greenwood & Levin, 1998). 

Regarding knowledge, community-based research seeks to redefine how we conceptualize knowledge in relation to academic research (Strand et al., 2003a).  Researchers who conduct CBR projects recognize the important knowledge that community members possess on the subject of their environment and the issues they are dealing with (Cordes, 1998a, No Concrete section, para. 2; Hills & Mullett, 2000, p. 1), what Strand (2000) calls "local knowledge" (p. 88).  This knowledge is key throughout the research process.  This acceptance of community knowledge does require the researcher to rethink his or her role.  As Stringer (1996) says, "The role of the researcher is not that of an expert who does research, but that of a resource person" (p. 22).  The expertise that the researcher brings to the equation is still valued; however, the local knowledge that the community brings is recognized as integral to the research process (Strand et al., 2003a). 

I have provided a brief overview of the methodology of CBR.  However, the purpose of this chapter is to describe the case study methods that I used to carry out this process study.  The descriptions of data collection and data analysis that are included in this chapter pertain to the data that were collected and analyzed for the contrasting case studies.  A description of the data collection and analysis that was conducted for the CBR projects in each case study will be included in the case descriptions in chapters four and five. 

Participants and Setting

Though I came into contact with a variety of people in each case study, my primary research collaborators are the main participants of my study.  In the first case study that I carried out, my collaboration with the Coalition for Schools, there were initially two primary collaborators, one of the co-chairs of the Coalition, Marge Bowline, and the director of the Coalition, Lisa Brown.  As my collaboration progressed, I worked primarily with Lisa Brown. 

The Coalition for Schools is an organization that has been created to support greater academic achievement in an urban school district in a western city.  The Coalition has focused its efforts toward a feeder pattern of schools in a quadrant of the city that has a high percentage of students who are eligible for free or reduced lunches, a high percentage of minority students, and a high percentage of English language learners.  This feeder pattern includes five elementary schools, two middle schools, and three small high schools that were originally part of one large high school and that are housed in one building.  The Coalition is an alliance of non-profit organizations, foundations, parent organizations, universities and colleges, and the school district working together to support achievement in these low performing schools.  The Business and Schools United (BSU) organization is the lead partner for the Coalition, and the Coalition is housed at BSU.  Marge Bowline is the director of BSU and one of the co-chairs of the Coalition for Schools.  She helped to create the Coalition and to procure funding for the organization.  The Coalition was a year old when I began my work with them.  Lisa Brown was hired to direct the Coalition and replaced the first director.  She had been in her position for about six months when I began my work with the Coalition. 

The two primary collaborators in my work in a small, western, mountain town are John Brewer and Maria Swenson.  The town is a small rural community that has a rapidly growing immigrant population from Mexico, about half of which are Indians from a remote area of the country.  Both John Brewer and Maria Swenson work in positions that have direct contact with this population.  John Brewer is the director of the literacy program which offers free English courses for English as a Second Language (ESL) students.  He is also a member of the city council.  Marge Swenson, who is herself a former immigrant from South America, is the coordinator of the diversity office which provides services to immigrants in town.  The case descriptions in chapters four and five provide greater detail of the participants and setting. 

Data Collection

As I progressed through each case study, I pursued two streams of data collection; the data collected to pursue the CBR projects and data that were collected as part of this case study to study CBR.  This section describes only the data that were collected for the case studies.  A description of the CBR data that were collected for each collaboration is included in the case descriptions in chapters four and five. 

Since the purpose of case study research is to provide an in-depth exploration of the person, program, or process under study, it requires intensive data collection (Merriam, 1998; Yin, 2003) using "multiple forms of data" (Creswell, 2002, p. 486).  Data collection for case studies usually focuses on three sources of data: observations, interviews, and documents (Merriam, 1998).  Though all qualitative research is to some extent based on the idea of emergent design, this study was truly emergent.  Though the research questions that this study proposed to address did not shift throughout the study, the methods of data collection changed to accommodate emerging issues or ideas.  According to Patton (1990),

What is certain is that different methods produce quite different information.  The challenge is to find out which information is most needed and most useful in a given situation, and then employ those methods best suited to producing the needed information (p. 196).

Though I collected all three forms of data (observations, interviews, and documents) for each study, there are some variations that are detailed in the following sections.  Appendix A provides a list showing the dates of meetings and interviews for each case study. 

Observations

My primary source of data collection for both case studies was observation.  Since I was essentially observing myself as I collaborated with my community partner, all of the observations that I completed for my case study data collection were participant observations.  Creswell (2002) defines participant observation as "an observational role adopted by researchers when they take part in activities in the setting they observe" (p. 200).  In this role, the researcher "actually engages in activities at the site begin studied" (p. 200).  Glesne (1999) describes a continuum of participation that "ranges from mostly observation to mostly participation" (p. 44).  Based on this continuum, I was what Glesne (1999) describes as a "full participant" in every interaction relating to my collaborative work with my community partners since I was concurrently a member of the collaborative partnership as well as the researcher investigating the process.  

In all of the meetings that I conducted with my community partners in relation to our CBR work, I collected data around those interactions.  I utilized Merriam's (1998) checklist of elements to structure my observations: physical setting, participants, activities and interactions, conversation, subtle factors, and my own behavior (pp. 97-98).  When working on my first CBR project with the Coalition, I initially only maintained field notes.  I was concerned that if I taped our meetings that it would be intrusive and would impact the openness of our conversations (Merriam, 1998).  However, as my study progressed I realized that it was difficult to take effective notes while participating in the conversation.  I then asked my community partners if I could tape subsequent meetings.  After that, most of the meetings I had with Lisa Brown or Marge Bowline were taped and then transcribed.  As part of the transcription process, I added notes that clarified or contextualized the dialogue.  When I began my work with my community partners in my small town, I asked during the first meeting if I could tape all of our meetings; both John Brewer and Maria Swenson readily agreed.  I found that after the use of the tape recorder became routine, they did not seem to be inhibited by being recorded.  Using the tape recorder allowed me to collect much more extensive data from my observations of our meetings. 

            Interviews

As part of the data collection for both case studies, I collected both formal and informal interview data (Patton, 1990).  Informal conversational interview questions were interwoven into meetings that we had in relation to ongoing research (Merriam, 1998) and were recorded as part of observation transcriptions.  These informal questions typically addressed how the community partner felt the research process was progressing, whether the research was meeting their needs, or addressed immediate questions that arose through the process of continued interaction. 

I also collected formal interview data for both case studies; however, I conducted fewer formal interviews with my community partners from the Coalition for Schools.  As my work with the Coalition progressed, I sought to determine particular data collection procedures that would address my research questions.  Since I was working within a collaborative relationship, part of the consideration when choosing methods was the impact that various methods would have on the relationship with my community partner.  In this first case study, as I show in more detail in chapter four, it was challenging to develop a collaborative relationship with my community partners.  The lack of trust and communication within this relationship made it difficult to carry out formal interviews discussing our collaboration.  I felt that these kinds of interviews would create greater distance between us.  Instead I relied primarily on other forms of data collection, observations and documents.  However, I did interview both Lisa Brown and Marge Bowline once formally toward the end of our partnership.  This interview included questions about the work of the Coalition as well as questions relating to community-based research (Appendix B).  I also conducted a follow-up email interview with Lisa Brown after beginning the process of data analysis (Appendix B).   

In my collaboration with John Brewer and Maria Swenson in my small town, I was able to develop a much more honest and open relationship from the beginning and felt very comfortable conducting formal interviews about the process.  I interviewed John and Maria individually three times throughout our collaboration (Appendix B).  I used a semi-structured approach (Rubin & Rubin, 1995) when designing the interview protocols.  I prepared questions as a starting point, but allowed the conversation to flow in whatever direction was helpful to providing insight.  The first interview focused on getting a sense of their background and experiences with research, their expectations for our research, and strategies for effective communication.  The second interview focused on their satisfaction with how things were proceeding, whether they felt we were communicating effectively, and whether they were having the input they wanted to have in the process.  The final interview focused primarily on the research questions of the case study: what were the issues that arose, what helped or hindered our collaboration, and what benefits did they receive from the research.  I transcribed each interview and added additional notes for interpretation. 

As part of the data collection process, I also collected or created a variety of documents including: email communications, a reflective journal, a phone call log, and other items that were provided by my community partners such as newsletters and meeting minutes.  As part of my collaboration with the Coalition for Schools, we relied extensively on email for communication since I found it difficult to schedule face-to-face meetings with Marge Bowline and Lisa Brown.  These email conversations are an important source of data in compiling a picture of our collaborative experience.  I also collected email data during my second case study.  However, these email communications focused primarily on setting up logistics.  Most important conversations were conducted face-to-face. 

Throughout both case studies, I sought to engage in a reflective stance toward my role in the research process.  In order to aid my reflection, I maintained a journal in which I transcribed my thinking in relation to my experiences and the perceived experiences of my community partners.  Merriam (1998) expresses some concern about using personal documents such as journals as data.  Merriam (1998) says,

Personal documents are a reliable source of data concerning a person's attitudes, beliefs, and view of the world.  But because they are personal documents, the material is highly subjective in that the writer is the only  one to select what he or she considers important to record.  Obviously these documents are not representative or necessarily reliable accounts of what actually may have occurred (p. 116).

However, Merriam (1998) does point out that one of the goals of qualitative research is to "reflect the participant's perspective" (p. 116).  Since this is a process study, the perceptions of all participants are a key consideration (Patton, 1990).  As I am a participant in this study, my perceptions of my experience of the process are important. 

The other documents I collected consisted of a phone call log and documents obtained when meeting with my community partners.  The phone call log consisted of a brief description of phone calls that were made during the research process.  If the conversation was extensive, I tried to recreate the conversation as closely as possible.  The phone call log was used primarily during my collaboration with John Brewer and Maria Swenson.  I also obtained various documents from my community partners.  These mostly included newsletters, meeting minutes, and data collected from previous research.  Most of the documents related to the CBR work we were conducting; yet some of the documents also provided information for my case study research. 

Data Analysis

After completing both case studies, I had accumulated large volumes of data (more than 500 pages of data for each case study).  I organized the data from both cases into what Yin (2003) calls a case study data base .   I organized my case study data base in a chronological order so that I could move through the data from the beginning to the end of the process.  This allowed me to perceive the progression of the process and my changing views throughout.  However, I felt that I needed an additional frame from which to organize the data. 

Data analysis was an ongoing process throughout the implementation of each case study.  Periodically I composed analytic memos to begin to formulate ideas around particular findings.  As each study progressed, I looked for events with common elements within the data that had "issue-relevant meaning" (Creswell, 1998, p. 154) or significance for the study.  As I recognized these common elements, I focused on determining whether they continued to be supported throughout the data collection process.  Creswell (1998) calls this process categorical aggregation.  As categories within the data began to emerge, I began to look for patterns or themes that connected these categories.  Based on the literature and the categories and themes that emerged while conducting the cases, I created an analytic framework from which to organize and think about the data. 

Analytic Framework      

The analytic framework is composed of four categories: community, collaboration, knowledge creation, and change.  In creating this framework, I was influenced by Stoecker's (2003) delineation of radical and mainstream CBR.  I view each of the four constructs of my framework as existing on a continuum.  At one end, there is radical CBR, in the middle, mainstream CBR, and at the other end the professional expert model or consulting (see Figure 1).  Based on how I conceptualize this framework, the closer on the continuum the researcher moves toward radical CBR, the greater the potential for change that will benefit the community with which the researcher is collaborating. 

When considering the category of community, the goal is to work as closely as possible with the community.  Since the ultimate goal of CBR is "social change for social justice" (Stoecker, 2002a, p. 9), the closer the researcher is to the members of the community who are dealing with the problem (Stoecker, 2003), the greater the potential to empower.  The community continuum includes grassroots organizations on one end and organizations which do not represent the community or use practices that "disempower the community" (Strand et al., 2003a. p. 73) on the other (see Figure 1).  In between are organizations that are a level removed from grassroots organizations but still seek to represent the community democratically, what Strand et al. (2003a) call "midlevel organizations" (p. 74).  Conducting CBR projects with midlevel organizations is what Strand et al. (2003a) label " doing CBR in the middle " (p. 73). 

Within this analytic framework, I conceptualize collaboration as shared decision making.  The goal is that the community should have equal power with the researcher and that decision making should be a shared process throughout (Strand et al., 2003a).  When considering this concept within the continuum, shared decision making is at one end of the continuum and at the other end the decisions are made primarily by the researcher (see Figure 1).  A companion to collaboration is the concept of participation in knowledge creation.  The primary goal in relation to this aspect of the framework is that the community assists in the creation of all knowledge that is generated during the CBR process, thus leading to community empowerment.  This point of the framework is based on the principle that the knowledge of community members is valid (Strand et al., 2003a) and integral to creating strong results.  At one end of the continuum, the community is involved in all aspects of knowledge creation, at the other end, the researcher controls the creation of knowledge (see Figure 1). 

The final point of the analytic framework is change (see Figure 1).  If you consider CBR within the radical framework described by Stoecker (2003), the goal for change is "massive structural changes in the distribution of power and resources through far-reaching changes in governmental policy, economic practices, or cultural norms" (p. 36).  This goal can be difficult to achieve.  More often, CBR work leads to programmatic changes within an organization or other more limited changes (Strand et al., 2003a).  However, each change within a community can have a cumulative effect that can lead to broader change.  Community-based research that does not involve the community in close collaboration and knowledge creation is less likely to create change that benefits the community.

Analysis of Contrasting Cases

Since this study utilizes contrasting cases, data analysis occurs at two levels: within-case and across cases (Merriam, 1998).  Merriam (1998) describes this process:            

For the within-case analysis , each case is first treated as a comprehensive case in and of itself.  Data are gathered so the researcher can learn as much about the contextual variables as possible that might have a bearing on the case...Once the analysis of each case is completed, cross-case analysis begins.  A qualitative, inductive, multicase study seeks to build abstractions across cases (pp. 194-195).

For each case, I analyzed observations, interviews, and documents to develop a description of the case. This description depicts the setting and participants as well as a general chronology of events and provides the reader with an understanding of the particulars of the case (Creswell, 1998).  This allows the reader to develop an understanding of the case within the larger context (Creswell, 2002).  Then using the analytic framework I developed, I did some within-case analysis and organized the categories that emerged during each study around the four constructs of my analytic framework.  This within-case analysis focused on answering the primary research question: What is the process of collaborating with a community partner on a community-based research project?  Thus each case analysis consists of  "both description and thematic development" (Creswell, 2002, p. 486).           

After completing the within-case analysis, I focused on the cross-case analysis to address three of the sub-questions of the study: What kinds of issues arise when collaborating on a community-based research project? What facilitates or hinders the process of collaboration? and, What does the researcher gain through this collaborative process, and what are the benefits for the community?  In the cross-case analysis, I used data from both case studies to address these questions.  I explored the categories that had emerged throughout each case study and then compared to see if these categories were supported in both cases.  I used the categories and themes that emerged during the within-case analysis and the cross-case analysis to determine "naturalistic generalizations" (Creswell, 1998, p. 154) concerning the field of community-based research.  Creswell (1998) defines naturalistic generalizations as "generalizations that people can learn from the case either for themselves or for applying it to a population of cases" (p. 154).  These naturalistic generalizations address the final question of the study: What can we learn from these experiences to inform the field of CBR?

In order to lend credibility to the findings of my study, I incorporated a variety of validity procedures.  The first validity procedure I employed was prolonged engagement in the field (Creswell & Miller, 2000) or what Merriam (1998) calls "long-term observation" (p. 204).  I worked on my case study with the Coalition for a period of nine months, and I worked with John and Maria for a period of eight months.  During each of these case studies, I had consistent contact with my community partners.  Collaborating with my community partners for this length of time allowed me to develop tentative categories in my findings and then follow up on these preliminary findings through observations or interviews (Creswell & Miller, 2000).  Therefore, the length of each case study and the consistent contact I had with my community partners lends credibility to my perceptions of this experience.

In addition to prolonged engagement in the field, another important validity procedure I employed, which is integral to case study design, was triangulation (Creswell, 1998).  Merriam (1998) defines triangulation as "using multiple investigators, multiple sources of data, or multiple methods to confirm the emerging findings" (p. 204).  I employed methodological triangulation (Creswell & Miller, 2000) since I collected three forms of data: observations, interviews, and documents.  I also employed multiple sources of data since interviews were conducted with several participants (Creswell & Miller, 2000).  I used the process of triangulation to seek convergence in the data and to confirm or disconfirm emerging categories and themes (Creswell & Miller, 2000).  As part of this process, I employed another validity strategy, disconfirming evidence (Creswell &  Miller, 2000).  Categories or themes that emerged in the within-case analysis were compared across cases.  If a category did not hold true across cases, it was generally deemed to be unreliable.  However, I did utilize what Creswell (1998) calls direct interpretation.  In direct interpretation, "the case study researcher looks at a single instance and draws meaning from it without looking for multiple instances" (p. 154).  I did recognize that there were single incidents specific to only one case that were significant to the study as well. 

Since this case study focused on the study of process, my perceptions were an integral component of the research.  However, since I did write interpretations of what I considered to be the perceptions of others, I used member checking to ensure accurate portrayal (Creswell & Miller, 2000).  I conducted member checking toward the end of the study so that it would not potentially disrupt the collaborative process.  I shared an outline of findings with Lisa Brown with the Coalition and also John Brewer and Maria Swenson in my small town and allowed them the opportunity to provide feedback.  Lisa Brown responded to the findings through email and said, "Thanks for sharing [these findings].  I feel it is accurate, and that it was a learning experience for all of us."  Maria Swenson also responded to the findings that I shared with she and John.  She said, "I looked at [the findings] and it sounds good.  I agree with all said."  John also said that he thought that the findings looked good. 

Finally, I used the validity procedure of thick description when writing about the study in order to give the reader a sense of being there and to capture the essence of the experience (Creswell & Miller, 2000).  This is an important feature in case study design that is presented to the reader through the case description.  The case description for each contrasting case is included in chapters four and five.  

            Subjectivity

Another method of creditability I used continuously throughout the research process was researcher reflexivity (Creswell & Miller, 2000).  I incorporated researcher reflexivity by constantly questioning my assumptions about what I thought was happening.  I sought to maintain a heightened sense of awareness of the biases that I brought to the study and maintained this awareness when adding contextual data to field notes, observations transcriptions, and interview transcriptions, and also when writing journal entries. 

Since my perceptions of the research process played a major part in the findings of the study, it was important that I attend to the idea of subjectivity.  Peshkin (1988), defines subjectivity as "the quality of the investigator that affects the results of observational investigation" (p. 17).  Peshkin (1988) points out that an individual's subjectivity is not something that can be removed, and it is therefore something researchers need to be aware of throughout the research process.  Peshkin (1988) identified the various facets of his subjectivities through a series of I's, for example, the "justice-seeking I" (p. 18) and "the community-maintenance I" (p. 18).  Though Peshkin does not view subjectivity as necessarily negative, he does feel it is something that researchers need to realize and acknowledge.  It was important to examine my own subjectivities throughout the research process so that I was aware of how these subjectivities could influence my interpretations and portrayal of events.  As Strand (2000) points out, "the researcher's values, experiences, and personal points of view are as much a part of the research process as those of the people studied, and they should be discussed and acknowledged" (p. 91). 

Since the two CBR projects I worked on were in different settings and related to different types of work, I dealt with different subjectivities within each case study.  In my work with the Coalition for Schools many of the subjectivities that I brought to that collaboration arose from my past experience as a classroom teacher.  I hold the perception that people who do not have experience in a K-12 classroom do not generally understand the issues that classroom teachers have to address.  I can be defensive and overly sensitive to criticism that I feel puts the blame on teachers.  There were many times during my partnership with the Coalition that I realized this subjectivity was influencing my reactions to statements made by Lisa Brown or Marge Bowline.  I also think that this perception at times clouded my view of the knowledge that Lisa brought to the equation.  Though I felt that she was very knowledgeable in certain areas, I questioned her understanding of what was actually happening in the schools that are part of the Coalition.  I tried to be aware of my bias in this area, though I do not believe I was always successful in controlling how this bias influenced my work with Lisa. 

Another bias that I brought to my work with the Coalition was the idea that a successful partnership should not have conflict.  I tend to avoid conflict in my personal life.  I have difficulty at times recognizing the benefits that conflict can bring.  Because of this, I did not communicate as effectively with Lisa as I could have.  If had been more willing to risk conflict, we may have been able to develop a more productive working relationship.  When I began my work with John Brewer and Maria Swenson, I determined that I would not avoid conflict in this collaboration.  When a situation did arise where John and I disagreed, I engaged him, and we talked through the matter.  The outcome was that we both were able to see the value of the other's viewpoint. 

Though I was able to address the issue of conflict avoidance in my work in John Brewer and Maria Swenson, there were other subjectivities and biases of which I had to be aware.  I am liable to have the perception that small towns tend to discriminate against minorities.  Since all of the projects that I completed with John and Maria involved the immigrant population in town, I felt at times that I was waiting for someone to say something that would demonstrate their prejudice.  At times, I would jump to the conclusion that a particular statement was pejorative.  When looking back again at the statement in the context of the full conversation, I realized at times that I may have misinterpreted particular statements.  I had to make a concerted effort not to single out statements just because they supported my bias.  Nevertheless, this subjectivity did influence whom I chose to partner with during this case study.  I had originally planned to include Maria's supervisor, Jennifer Payton, in our collaboration.  However, after meeting with Jennifer in October 2003, I decided not to collaborate with her since she made several comments during the meeting that I perceived to be pejorative.  If I had decided to work with Jennifer, I may have found that these comments did not represent discrimination but rather a lack of understanding of the impact of language choices. 

Two other subjectivities that I brought into my work on both projects related to my experience with previous CBR projects.  As I was involved in another community-based research project before working on my dissertation, I already had an initial perception of how the process works.  One concern that arose during my previous experience was the issue of communicating with my community partner.  I had difficulty developing a research question because the conversations that I shared with my community partner seemed circuitous.  We talked around questions during several meetings before I was finally able to gain a sense of what she was hoping to achieve from the research.  Though these past experiences with community-based research helped me to anticipate some of the issues that arose, I tried to make sure that the anticipation of issues did not create issues. 

When entering into CBR projects, it is important to me that I am doing work that I view as meaningful.  Work that is meaningful to me would be research that allows me to consistently interact with members of the community on a personal level.  However, I tried to maintain the awareness that the research that I wished to pursue was not necessarily the research that the people I was collaborating with wished to pursue.  I continued to remind myself that these discrepancies should not interfere with the development of a research design that was beneficial to my community partner and had the potential to bring about effective change.  Since change is the goal of community-based research, I needed to be sure that the change I was assisting to create was the change that the community partner was seeking to make rather than the change that I would have liked to pursue. 

Finally, when a researcher carries out a qualitative study, it is also important to attend to the subjectivities that the researcher brings based on gender, age, ethnicity, and socioeconomic status.  I feel at times that I lack self-awareness of how these orientations impact the way that I view the world.  Though I tried to be conscious of these factors while doing my research, I am not sure that I was successful in completely exploring how these subjectivities may have influenced my research.  I do feel, however, that my status was an issue in the work that I conducted with the Coalition for Schools.  My status in relation to my age (under 40) and my position as a graduate student influenced how my community partners at the Coalition viewed my role, and my socioeconomic background impacted the level of confidence that I felt when working with members of the Coalition.  I come from a working class background while my community partners at the Coalition come from backgrounds of higher status both in relation to levels of education and socioeconomic status.  At times, I did feel out of place moving through the world of the Coalition in that I often felt that I was from a lower class than many of the people with which I came into contact.  I felt most comfortable when interacting with teachers or parents. 

In order to minimize the impact of my subjectivities, I closely monitored my feelings as I carried out my research.  I looked for situations where I felt uncomfortable or that I wanted to avoid as well as situations where I felt comfortable and that I wanted to continue.  When these feelings arose, I realized that I was usually being influenced by subjectivity (Glesne, 1999; Peshkin, 1988).  I analyzed my feelings and considered how they related to my subjectivities, then took note of these occurrences in my journal (Peshkin, 1988).  Throughout the research process, I was mindful of previously identified subjectivities.  I also tried to be aware of newly emerging subjectivities that I may not have considered (Peshkin, 1988) that would potentially influence my research. 

Limitations of This Study

This study seeks to compare two cases of conducting community-based research.  However, there are differences between the two experiences that may have impacted the findings of the study.  In my work with the Coalition, I was a paid employee.  Though I was hired with the understanding that I would be a collaborative researcher, I believe my position as an employee impacted how Marge Bowline and Lisa Brown viewed my role, and it also impacted my reactions to various situations.  The fact that I was an employee in the first case study when collaborating with the Coalition but in the second case study I was independent, may have created some of the differences that were apparent in the two cases. 

Another limitation of this study is that it primarily focuses on the researcher's experience of this process.  Though I did interview my community partners, the number of interviews in the first case study was more limited.  If I had conducted additional interviews throughout the first case study, I might have additional information to support or contradict some of my observations.  However, the purpose of this study is to provide insight into this process for practitioners in the field of community-based research, thus it is beneficial to explore the researcher's perspective of these two experiences. 

The final limitation of this study relates to the timeline of the completion of the study.  Since I only recently finalized data collection in relation to my work with John Brewer and Maria Swenson, I am not really able to make an assessment at this point as to whether any of the work we completed will affect change.  My work with the Coalition was completed almost a year ago so it easier to assess the impact of that work.  However, even with the first case study, there is a possibility that some of the work that I completed could eventually lead to change.  If I were to conduct a long-term case study in relation to either of these collaborations, it would be more feasible to assess the impact of our work. 

This chapter provided an overview to the case study methods that were used to conduct this study.  I detailed a rationale for choosing this method, then described data collection, analysis, and procedures in relation to validity.  Since this is a process study of the methodology of CBR, I also described the foundations of this methodology.  The next three chapters will present the findings of this study.  Chapters four and five provide a synopsis of the within-case analysis of each of the contrasting cases.  I begin each chapter with a chronological overview of the major events of the case and then present within-case analysis organized around the four concepts of my analytic framework.  In chapter six, I present the findings from the cross-case analysis that address the sub-questions of the study and identify the "naturalistic generalizations" (Creswell, 1998, p. 154) that emerged from the study with recommendations for further research. 

usa flag

  • Policy & Compliance
  • Clinical Trials

NIH Definition of Clinical Trial Case Studies

The case studies provided below are designed to help you identify whether your study would be considered by NIH to be a clinical trial. Expect the case studies and related guidance to evolve over the upcoming year. For continuity and ease of reference, case studies will retain their original numbering and will not be renumbered if cases are revised or removed.

The simplified case studies apply the following four questions to determine whether NIH would consider the research study to be a clinical trial:

  • Does the study involve human participants?
  • Are the participants prospectively assigned to an intervention?
  • Is the study designed to evaluate the effect of the intervention on the participants?
  • Is the effect being evaluated a health-related biomedical or behavioral outcome?

If the answer to all four questions is “yes,” then the clinical study would be considered a clinical trial according to the NIH definition.

See this page for more information about the NIH definition of a clinical trial.

General Case Studies

Institute or center specific case studies.

The study involves the recruitment of research participants who are randomized to receive one of two approved drugs. It is designed to compare the effects of the drugs on the blood level of a protein.

  • Does the study involve human participants? Yes, the study involves human participants.
  • Are the participants prospectively assigned to an intervention? Yes, the participants are prospectively assigned to receive an intervention, one of two drugs.
  • Is the study designed to evaluate the effect of the intervention on the participants? Yes, the study is designed to evaluate the effect of the drugs on the level of the protein in the participants’ blood.
  • Is the effect being evaluated a health-related biomedical or behavioral outcome? Yes, the effect being evaluated, the level of a protein, is a health-related biomedical outcome.

The study involves the recruitment of research participants with condition Y to receive a drug that has been approved for another indication. It is designed to measure the drug’s effects on the level of a biomarker associated with the severity of condition Y.

  • Are the participants prospectively assigned to an intervention? Yes, the participants are prospectively assigned to receive an intervention, the approved drug.
  • Is the study designed to evaluate the effect of the intervention on the participants? Yes, the study is designed to evaluate the drug’s effect on the level of the biomarker.
  • Is the effect being evaluated a health-related biomedical or behavioral outcome? Yes, the effect being evaluated, the level of a biomarker, is a health-related biomedical outcome.

The study involves the recruitment of research participants with condition X to receive investigational compound A. It is designed to assess the pharmacokinetic properties of compound A.

  • Are the participants prospectively assigned to an intervention? Yes, the participants are prospectively assigned to receive an intervention, compound A.
  • Is the study designed to evaluate the effect of the intervention on the participants? Yes, the study is designed to evaluate how the body interacts with compound A
  • Is the effect being evaluated a health-related biomedical or behavioral outcome? Yes, the effect being evaluated, pharmacokinetic properties, is a health-related biomedical outcome.

The study involves the recruitment of research participants with disease X to receive an investigational drug. It is designed to assess safety and determine the maximum tolerated dose of the drug.

  • Are the participants prospectively assigned to an intervention? Yes, the participants are prospectively assigned to receive an intervention, the investigational drug.
  • Is the study designed to evaluate the effect of the intervention on the participants? Yes, the study is designed to assess safety and determine the maximum tolerated dose of the investigational drug.
  • Is the effect being evaluated a health-related biomedical or behavioral outcome? Yes, the effect being evaluated, safety and maximum tolerated dose, is a health-related biomedical outcome.

The study involves the recruitment of research participants with disease X to receive a chronic disease management program. It is designed to assess usability and to determine the maximum tolerated dose of the chronic disease program (e.g., how many in-person and telemedicine visits with adequate adherence).

  • Are the participants prospectively assigned to an intervention? Yes, the participants are prospectively assigned to receive an intervention, the chronic disease management program.
  • Is the study designed to evaluate the effect of the intervention on the participants? Yes, the study is designed to determine the maximum tolerated dose of the program to obtain adequate adherence.
  • Is the effect being evaluated a health-related biomedical or behavioral outcome? Yes, the effect being evaluated, tolerable intensity and adequate adherence of the intervention, is a health-related outcome.

The study involves the recruitment of research participants with disease X to receive either an investigational drug or a placebo. It is designed to evaluate the efficacy of the investigational drug to relieve disease symptoms.

  • Are the participants prospectively assigned to an intervention? Yes, the participants are prospectively assigned to receive an intervention, the investigational drug or placebo.
  • Is the study designed to evaluate the effect of the intervention on the participants? Yes, the study is designed to evaluate the effect of the investigational drug on the participants’ symptoms.
  • Is the effect being evaluated a health-related biomedical or behavioral outcome? Yes, the effect being evaluated, relief of symptoms, is a health-related outcome.

The study involves the recruitment of research participants with disease X to receive an investigational drug. It is designed to assess whether there is a change in disease progression compared to baseline. There is no concurrent control used in this study.

  • Is the study designed to evaluate the effect of the intervention on the participants? Yes, the study is designed to evaluate the effect of the investigational drug on the subject’s disease progression.
  • Is the effect being evaluated a health-related biomedical or behavioral outcome? Yes, the effect being evaluated, disease progression, is a health-related outcome.

The study involves the recruitment of research participants with disease X to test an investigational in vitro diagnostic device (IVD). It is designed to evaluate the ability of the device to measure the level of an antibody in blood.

  • Are the participants prospectively assigned to an intervention? No, in this context the IVD would not be considered an intervention. The IVD is being used to test its ability to measure antibody levels, but not to test its effects on any health-related biomedical or behavioral outcomes. 

The study involves the recruitment of research participants with disease X to be evaluated with an investigational in vitro diagnostic device (IVD). The study is designed to evaluate how knowledge of certain antibody levels impacts clinical management of disease.

  • Are the participants prospectively assigned to an intervention? Yes, the participants are prospectively assigned to an intervention, measurement of an antibody level, with the idea that knowledge of that antibody level might affect clinical management.
  • Is the study designed to evaluate the effect of the intervention on the participants? Yes, the study is designed to evaluate how knowledge of the level of an antibody might inform treatment.
  • Is the effect being evaluated a health-related biomedical or behavioral outcome? Yes, the effect being measured, how blood antibody levels inform treatment, is a health-related outcome.

The study involves the recruitment of healthy volunteers who will be randomized to different durations of sleep deprivation (including no sleep deprivation as a control) and who will have stress hormone levels measured. It is designed to determine whether the levels of stress hormones in blood rise in response to different durations of sleep deprivation.

  • Does the study involve human participants? Yes, the healthy volunteers are human participants.
  • Are the participants prospectively assigned to an intervention? Yes, the participants are prospectively assigned to an intervention, different durations of sleep deprivation followed by a blood draw.
  • Is the study designed to evaluate the effect of the intervention on the participants? Yes, the study is designed to measure the effect of different durations of sleep deprivation on stress hormone levels.
  • Is the effect being evaluated a health-related biomedical or behavioral outcome? Yes, the effect being evaluated, stress hormone levels, is a health-related biomedical outcome.

The study involves the analysis of de-identified, stored blood samples and de-identified medical records of patients with disease X who were treated with an approved drug. The study is designed to evaluate the level of a protein in the blood of patients that is associated with therapeutic effects of the drug.

  • Does the study involve human participants? No, the study does not involve human participants because only de-identified samples and information are used.

The study involves the analysis of identifiable, stored blood samples and identified medical records of patients with disease X who were treated with an approved drug. The study is designed to evaluate the level of a protein in the blood of patients that is associated with therapeutic effects of the drug.

  • Does the study involve human participants? Yes, patients are human participants because the blood and information are identifiable.
  • Are the participants prospectively assigned to an intervention? No, secondary research with biospecimens or health information is not a clinical trial.

The study involves the recruitment of a healthy volunteers whose blood is drawn for genomic analysis. It is designed to identify the prevalence of a genetic mutation in the cohort and evaluate potential association between the presence of the mutation and the risk of developing a genetic disorder.

  • Are the participants prospectively assigned to an intervention? No, sample collection (blood draw) is not an intervention in this context.

Physicians report that some patients being treated with drug A for disease X are also experiencing some improvement in a second condition, condition Y. The study involves the recruitment of research participants who have disease X and condition Y and are being treated with drug A. The participants are surveyed to ascertain whether they are experiencing an improvement in condition Y.

  • Are the participants prospectively assigned to an intervention? No, participants are not prospectively assigned to receive an intervention as they are receiving drugs as part of their clinical care. The surveys are being used for measurement, not to modify a biomedical or behavioral outcome.

The study involves the recruitment of patients with disease X who are receiving one of three standard therapies as part of their clinical care. It is designed to assess the relative effectiveness of the three therapies by monitoring survival rates using medical records over a few years.

  • Are the participants prospectively assigned to an intervention? No, there is no intervention. The therapies are prescribed as part of clinical care; they are not prospectively assigned for the purpose of the study. The study is observational.

The study involves the recruitment of research participants with disease X vs. healthy controls and comparing these participants on a range of health processes and outcomes including genomics, biospecimens, self-report measures, etc. to explore differences that may be relevant to the development of disease X.

  • Are the participants prospectively assigned to an intervention? No, the measures needed to assess the outcomes are not interventions in this context, as the study is not intended to determine whether the measures modify a health-related biomedical or behavioral outcome.

The study involves the recruitment of healthy volunteers for a respiratory challenge study; participants are randomized to receive different combinations of allergens. The study evaluates the severity and mechanism of the immune response to different combinations of allergens introduced via inhalation.

  • Does the study involve human participants? Yes, healthy volunteers are human participants.
  • Are the participants prospectively assigned to an intervention? Yes, healthy volunteers are prospectively assigned to randomly selected combinations of allergens.
  • Is the study designed to evaluate the effect of the intervention on the participants? Yes, the study is evaluating the effects of different combinations of allergens on the immune response in healthy individuals.
  • Is the effect being evaluated a health-related biomedical or behavioral outcome? Yes, the study evaluates the severity and mechanism of the immune reaction to allergens, which are health-related biomedical outcomes.

The study involves the recruitment of research participants with Alzheimer’s disease (AD) to evaluate the effects of an investigational drug on memory, and retention and recall of information.

  • Are the participants prospectively assigned to an intervention? Yes, participants are prospectively assigned to receive the investigational drug.
  • Is the study designed to evaluate the effect of the intervention on the participants? Yes, the study is evaluating the effects of the drug on participants’ memory.
  • Is the effect being evaluated a health-related biomedical or behavioral outcome? Yes, the study evaluates memory, and retention and recall of information in the context of AD.

The study involves the recruitment of individuals to receive a new behavioral intervention for sedentary behavior. It is designed to measure the effect of the intervention on hypothesized differential mediators of behavior change.

  • Are the participants prospectively assigned to an intervention? Yes, participants are prospectively assigned to receive a behavioral intervention.
  • Is the study designed to evaluate the effect of the intervention on the participants? Yes, the study is evaluating the effects of the intervetion on mediators of behavior change.
  • Is the effect being evaluated a health-related biomedical or behavioral outcome? Yes, the effect being evaluated, mediators of behavior change, are behavioral outcomes relevant to health.

The study involves the recruitment of patients with disease X to be evaluated with a new visual acuity task. It is designed to evaluate the ability of the new task to measure visual acuity as compared with the gold standard Snellen Test

  • Are the participants prospectively assigned to an intervention? Yes, the participants are prospectively assigned to an intervention, the new visual acuity test.
  • Is the study designed to evaluate the effect of the intervention on the participants? No, the study is designed to evaluate the ability of the new visual acuity test to measure visual acuity as compared to the gold standard Snellen Test, but not to modify visual acuity.

The study involves the recruitment of research participants with CHF who were hospitalized before or after implementation of the Medicare incentives to reduce re-hospitalizations. Morbidity, mortality, and quality of life of these participants are evaluated to compare the effects of these Medicare incentives on these outcomes.

  • Are the participants prospectively assigned to an intervention? No, the intervention (incentives to reduce re-hospitalization) were assigned by Medicare, not by the research study.

The study involves the recruitment of healthcare providers to assess the extent to which being provided with genomic sequence information about their patients informs their treatment of those patients towards improved outcomes.

  • Does the study involve human participants? Yes, both the physicians and the patients are human participants.
  • Are the participants prospectively assigned to an intervention? Yes, physicians are prospectively assigned to receive genomic sequence information, which is the intervention.
  • Is the study designed to evaluate the effect of the intervention on the participants? Yes, the study is designed to evaluate the effect of intervening with physicians, on the treatment they provide to their patients.
  • Is the effect being evaluated a health-related, biomedical, or behavioral outcome? Yes, the effect being evaluated, the extent to which providing specific information to physicians informs the treatment of patients, is a health-related outcome.

The study involves the recruitment of research participants with a behavioral condition to receive either an investigational behavioral intervention or a behavioral intervention in clinical use. It is designed to evaluate the effectiveness of the investigational intervention compared to the intervention in clinical use in reducing the severity of the obsessive compulsive disorder.

  • Are the participants prospectively assigned to an intervention? Yes, the participants are prospectively assigned to an intervention, either the investigational intervention or an intervention in clinical use.
  • Is the study designed to evaluate the effect of the intervention on the participants? Yes, the study is designed to evaluate whether the investigational intervention is as effective as the standard intervention, at changing behavior.
  • Is the effect being evaluated a health-related, biomedical, or behavioral outcome? Yes, the effect being evaluated, the interventions’ effectiveness in reducing the severity of the condition, is a health-related behavioral outcome.

The study involves the recruitment of physicians who will be randomly assigned to use a new app or an existing app, which cues directed interviewing techniques. The study is designed to determine whether the new app is better than the existing app at assisting physicians in identifying families in need of social service support. The number of community service referrals will be measured.

  • Does the study involve human participants? Yes, both the physicians and the families are human participants.
  • Are the participants prospectively assigned to an intervention? Yes, physicians are prospectively assigned to use one of two apps, which are the interventions.
  • Is the study designed to evaluate the effect of the intervention on the participants? Yes, the study is designed to evaluate the effect of intervening with physicians, on social service support referral for families.
  • Is the effect being evaluated a health-related, biomedical, or behavioral outcome? Yes, the effect being evaluated, the number of referrals, is a health-related outcome.

The study involves the recruitment of parents to participate in focus groups to discuss topics related to parental self-efficacy and positive parenting behaviors. It is designed to gather information needed to develop an intervention to promote parental self-efficacy and positive parenting behaviors.

  • Does the study involve human participants? Yes, the parents are human participants.
  • Are the participants prospectively assigned to an intervention? No, a focus group is not an intervention.

The study involves the recruitment of healthy volunteers to test a new behavioral intervention. It is designed to evaluate the effect of a meditation intervention on adherence to exercise regimens and quality of life to inform the design of a subsequent, fully-powered trial.

  • Does the study involve human participants? Yes, study participants are human participants.
  • Are the participants prospectively assigned to an intervention? Yes, the participants are prospectively assigned to a behavioral intervention.
  • Is the study designed to evaluate the effect of the intervention on the participants? Yes, the study is designed to evaluate the effect of the intervention on adherence, and quality of life.
  • Is the effect being evaluated a health-related biomedical or behavioral outcome? Yes, adherence and quality of life are health-related outcomes.

A study will test the feasibility a mobile phone app designed to increase physical activity. A group of sedentary individuals will use the app for a week while their interactions with the app are monitored. The number of interactions with the app will be measured, as well as any software issues. Participants will also complete a survey indicating their satisfaction with and willingness to use the app, as well as any feedback for improvement. The app’s effect on physical activity, weight, or cardiovascular fitness will not be evaluated.

  • Does the study involve human participants? Yes, sedentary individuals will be enrolled.
  • Are the participants prospectively assigned to an intervention? The participants will interact with the app for a week.
  • Is the study designed to evaluate the effect of the intervention on the participants? No. While the participants’ interactions are monitored (steps or heart rate may be recorded in this process), the study is NOT measuring the effect of using the app ON the participant. The study is only measuring the usability and acceptability of the app, and testing for bugs in the software. The effect on physical activity is NOT being measured.
  • Is the effect being evaluated a health-related biomedical or behavioral outcome? N/A

The study involves the recruitment of healthy family members of patients hospitalized for disease X to test two CPR training strategies. Participants will receive one of two training strategies. The outcome is improved CPR skills retention.

  • Does the study involve human participants? Yes, family members of patients are human participants.
  • Are the participants prospectively assigned to an intervention? Yes, the participants are prospectively assigned to one of two CPR educational strategies.
  • Is the study designed to evaluate the effect of the intervention on the participants? Yes, the study is designed to evaluate the effect of educational strategies on CPR skills.
  • Is the effect being evaluated a health-related biomedical or behavioral outcome? Yes, retention of CPR skills is a health-related behavioral outcome.

The study involves the recruitment of research participants in three different communities (clusters) to test three CPR training strategies. The rate of out-of- hospital cardiac arrest survival will be compared.

  • Are the participants prospectively assigned to an intervention? Yes, the participants are prospectively assigned to receive one of three types of CPR training, which is the intervention.
  • Is the study designed to evaluate the effect of the intervention on the participants? Yes, the study is designed to evaluate the effect of different CPR training strategies on patient survival rates post cardiac arrest.
  • Is the effect being evaluated a health-related biomedical or behavioral outcome? Yes, out-of-hospital cardiac arrest survival is a health-related outcome.

A study involves the recruitment of school children to evaluate two different tools for monitoring food intake. Food consumption behavior will be measured by asking children to activate a pocket camera during meals and to use a diary to record consumed food. The accuracy of the two food monitoring methods in measuring energy intake will be assessed.

  • Does the study involve human participants? Yes, children are human participants.
  • Are the participants prospectively assigned to an intervention? No, in this context the monitoring methods would not be considered an intervention. The study is designed to test the accuracy of two monitoring methods, but not to test the effect on any health-related biomedical or behavioral outcomes. 

A study involves the recruitment of school children to evaluate two different tools for monitoring food intake. Food consumption behavior will be measured by asking children to activate a pocket camera during meals and to use a diary to record consumed food. Changes to eating behavior will be assessed.

  • Are the participants prospectively assigned to an intervention? Yes, the participants are prospectively assigned to two food monitoring methods.
  • Is the study designed to evaluate the effect of the intervention on the participants? Yes, the study is designed to determine whether using the monitoring methods changes eating behavior.
  • Is the effect being evaluated a health-related biomedical or behavioral outcome? Yes, eating behavior is a health-related outcome.

A study involves the recruitment of children at two schools to monitor eating behavior. Children’s food choices will be monitored using a remote food photography method. Food consumption and the accuracy of food monitoring methods will be assessed.

  • Does the study involve human participants? Yes, the children participating in this study are human participants.
  • Are the participants prospectively assigned to an intervention? No, not in this context. The study involves observing and measuring eating behavior, but not modifying it. This is an observational study.

A study involves the recruitment of children at two schools to evaluate their preferences for graphics and colors used in healthy food advertisements. Children will be presented with multiple health advertisements and their preferences for graphics and colors will be assessed.

  • Are the participants prospectively assigned to an intervention? Yes, the participants are prospectively assigned to see different advertisements.
  • Is the study designed to evaluate the effect of the intervention on the participants? Yes, the study is designed to evaluate the advertisements.
  • Is the effect being evaluated a health-related biomedical or behavioral outcome? No, preferences are not health-related biomedical or behavioral outcomes.

The study involves ambulatory patients who have new-onset stable angina and who are recruited from community practices. They are randomized to undergo CT angiography or an exercise stress test of the doctor’s choice. To keep the trial pragmatic, the investigators do not prescribe a protocol for how physicians should respond to test results. The study is designed to determine whether the initial test (CT angiography or stress test) affects long-term rates of premature death, stroke, or myocardial infarctions.

  • Are the participants prospectively assigned to an intervention? Yes, the participants are randomized to undergo CT angiography or an exercise stress test.
  • Is the study designed to evaluate the effect of the intervention on the participants? Yes, the study is designed to determine whether the initial test done affects long-term rates of certain clinical events.
  • Is the effect being evaluated a health-related biomedical or behavioral outcome? Yes, premature death, stroke, and myocardial infarction are health-related biomedical outcomes.

The study involves patients who present with stable angina to community practices. As part of their routine care some of their physicians refer them for CT angiography, while others refer them for exercise stress tests. The study is designed to see whether or not there's an association between the type of test that is chosen and long-term risk of death, stroke, or myocardial infarction.

  • Are the participants prospectively assigned to an intervention? No, the intervention is not prospectively assigned by the investigators. Rather, the intervention, in this case diagnostic study, occurs as part of routine clinical care.

The investigators conduct a longitudinal study of patients with schizophrenia. Their physicians, as part of their standard clinical care, prescribe antipsychotic medication. The investigators conduct an imaging session before starting treatment; they repeat imaging 4-6 weeks later.

  • Does the study involve human participants? Yes.
  • Are the participants prospectively assigned to an intervention? No, not in this context.  Antipsychotic medications are given as part of clinical care, not as part of a prospective, approved research protocol.  

The investigators conduct a longitudinal study of patients with schizophrenia. Their physicians, as part of their standard clinical care, prescribe antipsychotic medication. As part of the research protocol, all participants will be prescribed the same dose of the antipsychotic medication. The investigators conduct an imaging session before starting treatment; they repeat imaging 4-6 weeks later.

  • Are the participants prospectively assigned to an intervention? Yes, although participants are all receiving antipsychotic medication as part of their standard medical care, the dose of the antipsychotic medication is determined by the research protocol, rather than individual clinical need.
  • Is the study designed to evaluate the effect of the intervention on the participants?  Yes, the study is designed to evaluate the effect of a dose of antipsychotic medication on brain function.
  • Is the effect being evaluated a health-related biomedical or behavioral outcome ? Yes, brain function measured by imaging is a health-related outcome.

The study involves recruitment of healthy volunteers who will wear a thermal compression device around their legs. This pilot study is designed to examine preliminary performance and safety of a thermal compression device worn during surgery. Investigators will measure core temperature, comfort, and presence of skin injury in 15-minute intervals.

  • Are the participants prospectively assigned to an intervention? Yes, participants are assigned to wear a thermal compression device.
  • Is the study designed to evaluate the effect of the intervention on the participants?  Yes, the study is designed to evaluate the effect of the thermal compression device on participant core temperature, comfort, and presence of skin injury.
  • Is the effect being evaluated a health-related biomedical or behavioral outcome ? Yes, participant core temperature, comfort, and presence of skin injury are health-related biomedical outcomes.

The study involves collection of data on hospitalizations for various acute illnesses among people who live close to a border between two states that have recently implemented different laws related to public health (e.g. smoking regulations, soda taxes). The investigators want to take advantage of this “natural experiment” to assess the health impact of the laws.

  • Does the study involve human participants?  Yes, the study involves human participants.
  • Are the participants prospectively assigned to an intervention?  No, the interventions were assigned by state laws and state of residence, not by the research study.

The study involves recruitment of healthy volunteers to engage in working memory tasks while undergoing transcranial magnetic stimulation (TMS) to induce competing local neuronal activity. The study is measuring task performance to investigate the neural underpinnings of working memory storage and processing.

  • Are the participants prospectively assigned to an intervention? Yes, healthy volunteers are prospectively assigned to receive TMS stimulation protocols during a working memory task.
  • Is the study designed to evaluate the effect of the intervention on the participants? Yes, the study is evaluating the effects of local TMS stimulation on working memory performance and oscillatory brain activity in healthy individuals.
  • Is the effect being evaluated a health-related biomedical or behavioral outcome? Yes, the study evaluates working memory processes, which are health-related biomedical outcomes.

The study involves recruitment of healthy volunteers to engage in a social valuation task while dopamine tone in the brain is manipulated using tolcapone, an FDA-approved medication. The study aims to understand the role of dopamine in social decision-making and to search for neural correlates of this valuation using fMRI.

  • Are the participants prospectively assigned to an intervention? Yes, healthy volunteers are prospectively assigned to receive tolcapone during a social valuation task.
  • Is the study designed to evaluate the effect of the intervention on the participants? Yes, the study is evaluating the effects of modulating dopamine tone on social decision-making. Although this study uses an FDA-approved drug to modulate dopamine tone, the goal of this intervention is to understand the role of dopamine in a fundamental phenomenon (social valuation), and not to study the mechanism of action of the drug or its clinical effects.

The career development candidate proposes to independently lead a study to test a new drug A on patients with disease X. Patients will be randomized to a test and control group, with the test group receiving one dose of drug A per week for 12 months and controls receiving placebo. To assess presence, number, and type of any polyps, a colonoscopy will be performed. To assess biomarkers of precancerous lesions, colon mucosal biopsies will be collected. Complete blood count will be measured, and plasma will be stored for potential biomarker evaluation.

  • Are the participants prospectively assigned to an intervention? Yes, the participants are prospectively assigned to receive an intervention, drug A or placebo.
  • Is the study designed to evaluate the effect of the intervention on the participants? Yes, the study is designed to evaluate the effect of drug A and placebo on the presence and type of polyps.
  • Is the effect being evaluated a health-related biomedical or behavioral outcome? Yes, the effect being evaluated, the presence and type of polyps, is a health-related biomedical outcome.

Ancillary Study to Case Study #42b: Some types of drug A being evaluated in Case Study #42a have been reported to impact renal function. An internal medicine fellow performs an ancillary study where stored plasma from Case Study #42a will be evaluated for multiple biomarkers of renal function.

  • Does the study involve human participants? Yes, patients are human participants because the plasma and information are identifiable.
  • Are the participants prospectively assigned to an intervention? No, because the assignment of participants to an intervention occurs as part of an existing, separately funded clinical trial. This proposal would be considered an ancillary study that is not an independent clinical trial.

Ancillary Study to Case Study #42a: An internal medicine fellow designs an independent ancillary trial where a subset of patients from the parent trial in Case Study #42a will also receive drug B, based on the assumption that a two-drug combination will work significantly better than a single drug at both improving renal function and reducing polyps. The test subjects will be evaluated for renal function via plasma clearance rates at 6 and 12 months after initiation of drugs A and B.

  • Are the participants prospectively assigned to an intervention? Yes, the participants are prospectively assigned to receive an intervention, drugs A and B.
  • Is the study designed to evaluate the effect of the intervention on the participants? Yes, the study is designed to evaluate the effect of drugs A and B on renal function.
  • Is the effect being evaluated a health-related biomedical or behavioral outcome? Yes, the effect being evaluated, renal function, is a health-related biomedical outcome.

A group of healthy young adults will perform a Go/No-Go task while undergoing fMRI scans. The purpose of the study is to characterize the pattern of neural activation in the frontal cortex during response inhibition, and the ability of the participant to correctly withhold a response on no-go

  • Does the study involve human participants? Yes, healthy young adults will be enrolled in this study.
  • Are the participants prospectively assigned to an intervention? Yes, the participants will be prospectively assigned to perform a Go/No-Go task, which involves different levels of inhibitory control.
  • Is the study designed to evaluate the effect of the intervention on the participants? Yes, the study is designed to evaluate the effect of the Go/No-Go task on neural activation in the frontal cortex. The study will measure inhibitory control and the neural systems being engaged. In this study, the Go/No-Go task is the independent variable, and behavioral performance and the associated fMRI activations are the dependent variables.
  • Is the effect being evaluated a health-related biomedical or behavioral outcome? Yes, the neural correlates of inhibitory control and behavioral performance are health-related biomedical outcomes.

A group of adolescents will participate in a longitudinal study examining changes in executive function over the course of a normal school year. Color naming performance on the standard version of the Stroop test will be obtained. All measures will be compared at multiple time points during the school year to examine changes in executive function. The purpose is to observe changes in executive function and to observe if differences exist in the Stroop effect over the course of the school year for these adolescents.

  • Does the study involve human participants? Yes, adolescents will be enrolled in this study.
  • Are the participants prospectively assigned to an intervention? No, there is no intervention in this study and no independent variable manipulated. The adolescents are not prospectively assigned to an intervention, but instead the investigator will examine variables of interest (including the Stroop test) over time. The Stroop effect is used as a measurement of point-in-time data.
  • Is the study designed to evaluate the effect of the intervention on the participants? No, there is no intervention. Performance on the Stroop test is a well-established measure of executive function and the test is not providing an independent variable of interest here. It is not being used to manipulate the participants or their environment. The purpose is simply to obtain a measure of executive function in adolescents over the course of the school year.
  • Is the effect being evaluated a health-related biomedical or behavioral outcome? N/A. No effect of an intervention is being evaluated.

A group of participants with social anxiety will perform an experimentally manipulated Stroop test. In this variant of the Stroop test, the stimuli presented are varied to include emotional and neutral facial expressions presented in different colors. Participants are instructed to name the colors of the faces presented, with the expectation that they will be slower to name the color of the emotional face than the neutral face. The purpose of the study is to examine the degree to which participants with social anxiety will be slower to process emotional faces than neutral faces.

  • Does the study involve human participants? Yes, participants with social anxiety will be enrolled in this study.
  • Are the participants prospectively assigned to an intervention? Yes, the participants will be prospectively assigned to perform a modified Stroop test using different colored emotional/neutral faces to explore emotional processing in people with social anxiety. Note that the independent variable is the presentation of emotional vs neutral faces.
  • Is the study designed to evaluate the effect of the intervention on the participants? Yes, the study is designed to measure the effect of emotional valence (i.e. emotional faces) on participant response time to name the color. The purpose is to determine whether the response time to emotional faces is exaggerated for people with social anxiety as compared to neutral faces. Note that the response time to name the colors is the dependent variable in this study.
  • Is the effect being evaluated a health-related biomedical or behavioral outcome? Yes, the processing of emotional information is a health-related biomedical outcome.

The study involves healthy volunteers and compares temporal SNR obtained with a new fMRI pulse sequence with that from another sequence.

  • Are the participants prospectively assigned to an intervention? No, in this context the different pulse sequences would not be considered an intervention. The pulse sequences are not being used to modify any biomedical or behavioral outcome; rather the investigator is comparing performance characteristics of the two pulse sequences.

The study is designed to demonstrate that a new imaging technology (e.g. MRI, PET, ultrasound technologies, or image processing algorithm) is equivalent to, or has better sensitivity/specificity than a standard of care imaging technology. Aim one will use the new imaging technology and the gold standard in ten healthy volunteers. Aim Two will use the new imaging technology and the gold standard before and after a standard care procedure in ten patients. In both aims the performance of the new technology will be compared to the gold standard. No clinical care decisions will be made based on the use of the device in this study.

  • Does the study involve human participants? YES. Aim one will study ten healthy volunteers, and aim two will study ten patient volunteers.
  • Are the participants prospectively assigned to an intervention? Yes, participants will be prospectively assigned to be evaluated with a new imaging technology and the gold standard technology.
  • Is the study designed to evaluate the effect of the intervention on the participants? No, the study is not measuring the effect of the technologies ON the human subjects. The study is determining if the new technology is equivalent or better than the gold standard technology. No effect on the participant is being measured.

An investigator proposes to add secondary outcomes to an already funded clinical trial of a nutritional intervention. The trial is supported by other funding, but the investigator is interested in obtaining NIH funding for studying oral health outcomes. Participants in the existing trial would be assessed for oral health outcomes at baseline and at additional time points during a multi-week dietary intervention. The oral health outcomes would include measures of gingivitis and responses to oral health related quality of life questionnaires. Oral fluids would be collected for analysis of inflammatory markers and microbiome components.

  • Are the participants prospectively assigned to an intervention? No, because the assignment of participants to an intervention (and the administration of the intervention) occur as part of an existing, separately funded clinical trial. This proposal would be considered an ancillary study that leverages an already existing clinical trial.

The goal of the project is to use functional neuroimaging to distinguish patients with temporomandibular disorders (TMD) who experience TMD pain through centralized pain processes from those with TMD related to peripheral pain. Pain processing in a study cohort of TMD patients and healthy controls will be measured through functional magnetic resonance neuroimaging (fMRI) following transient stimulation of pain pathways through multimodal automated quantitative sensory testing (MAST QST). TMD patients will receive study questionnaires to better correlate the extent to which TMD pain centralization influences TMD prognosis and response to standard of care peripherally targeted treatment (prescribed by physicians, independently of the study).

  • Are the participants prospectively assigned to an intervention? No, not in this context. The transient stimulation of pain pathways and the fMRI are being performed to measure and describe brain activity, but not to modify it.

An investigator proposes to perform a study of induced gingivitis in healthy humans, to study microbial colonization and inflammation under conditions of health and disease. During a 3-week gingivitis induction period, each study participant will use a stent to cover the teeth in one quadrant during teeth brushing. A contralateral uncovered quadrant will be exposed to the individual's usual oral hygiene procedures, to serve as a control. Standard clinical assessments for gingivitis will be made and biospecimens will be collected at the point of maximal induced gingivitis, and again after normal oral hygiene is resumed. Biospecimens will be assessed for microbial composition and levels of inflammation-associated chemokines.

  • Are the participants prospectively assigned to an intervention? Yes, the participants are prospectively assigned to an intervention, abstaining from normal oral hygiene for a portion of the mouth, to induce gingivitis.
  • Is the study designed to evaluate the effect of the intervention on the participants? Yes, the study is designed to evaluate the effect of the induced gingivitis on microbial composition and levels of inflammatory chemokines in oral samples.
  • Is the effect being evaluated a health-related biomedical or behavioral outcome? Yes, the microbial composition and chemokine levels in oral samples are health-related biomedical outcomes.

The study will enroll older adults with hearing loss, comparing the effectiveness of enhanced hearing health care (HHC) to usual HHC. In addition to routine hearing-aid consultation and fitting, participants randomized to enhanced HCC will be provided patient-centered information and education about a full range of hearing assistive technologies and services. Study outcomes include the utilization of technology or services, quality of life, communication abilities, and cognitive function.

  • Does the study involve human participants? Yes, the study enrolls older adults with hearing loss.
  • Are the participants prospectively assigned to an intervention? Yes, participants are randomized to receive enhanced HCC or usual HCC interventions.
  • Is the study designed to evaluate the effect of the intervention on the participants? Yes, the study will evaluate enhanced HCC’s effectiveness in modifying participant behavior and biomedical outcomes.
  • Is the effect being evaluated a health-related biomedical or behavioral outcome? Yes, rate of technology/service utilization is a behavioral outcome and quality of life, communications, and cognition are biomedical outcomes that may be impacted by the interventions.

The study involves the recruitment of obese individuals who will undergo a muscle biopsy before and after either exercise training or diet-induced weight loss. Sarcolemmal 1,2-disaturated DAG and C18:0 ceramide species and mitochondrial function will be measured. Levels will be correlated with insulin sensitivity.

  • Are the participants prospectively assigned to an intervention? Yes, the participants are assigned to either exercise training or a diet.
  • Is the study designed to evaluate the effect of the intervention on the participants? Yes, the study is designed to compare the effects of the interventions on muscle metabolism.
  • Is the effect being evaluated a health-related biomedical or behavioral outcome? Yes, muscle metabolism/signaling is a health-related outcome.

The study involves the recruitment of participants with type 2 diabetes who will undergo a muscle biopsy before and after a fast to measure acetylation on lysine 23 of the mitochondrial solute carrier adenine nucleotide translocase 1 (ANT1). Levels will be related to rates of fat oxidation.

  • Are the participants prospectively assigned to an intervention? Yes, the participants are assigned to undergo a fast.
  • Is the study designed to evaluate the effect of the intervention on the participants? Yes, the study is designed to compare the effects of the fast on molecular parameters of metabolism.
  • Is the effect being evaluated a health-related biomedical or behavioral outcome? Yes, metabolism is a health-related outcome.

Insulin-resistant and insulin-sensitive nondiabetic adults who have a parent with type 2 diabetes will be followed over time to understand the role of mitochondrial dysfunction in the development of diabetes. Oral glucose tolerance tests will be performed annually to measure insulin sensitivity and glycemic status. Participants will also undergo a brief bout of exercise, and mitochondrial ATP synthesis rates will be measured by assessing the rate of recovery of phosphocreatine in the leg muscle, using 31P magnetic resonance spectroscopy.

  • Are the participants prospectively assigned to an intervention? No, the participants are not assigned to an intervention; the OGTT and 31P MRS are measures.

Participants with chronic kidney disease will be recruited to receive one of two drug agents. After 6 weeks of therapy, subjects will undergo vascular function testing and have measures of oxidative stress evaluated in their plasma and urine. Results of the function testing and the oxidative stress biomarkers will be related to drug treatment.

  • Are the participants prospectively assigned to an intervention? Yes, the participants are assigned to receive two different drugs.
  • Is the study designed to evaluate the effect of the intervention on the participants? Yes, the study is designed to compare the effects of the drugs on vascular function.
  • Is the effect being evaluated a health-related biomedical or behavioral outcome? Yes, vascular function is a health-related outcome.

Participants with Autosomal Dominant Polycystic Kidney Disease will be recruited to receive an oral curcumin therapy or placebo and the participants will undergo vascular function testing, renal imaging to assess kidney size, and assessment of oxidative stress biomarkers in urine and plasma after an ascorbic acid challenge. Changes in these outcomes will be related to oral therapy.

  • Are the participants prospectively assigned to an intervention? Yes, the participants are assigned to receive medication or placebo.
  • Is the study designed to evaluate the effect of the intervention on the participants? Yes, the study is designed to compare the effects of the drugs on vascular function and kidney size.
  • Is the effect being evaluated a health-related biomedical or behavioral outcome? Yes, vascular function and kidney size are health-related outcomes.

Kidney transplant recipients will be recruited to undergo an experimental imaging procedure at several timepoints up to 4 months post-transplantation. Output from the images will be related to pathological assessments of the transplant as well as clinical measures of renal function.

  • Are the participants prospectively assigned to an intervention? No, the participants are not assigned to receive an intervention. They undergo transplantation as part of their routine clinical care. The imaging procedure is a measure and not an intervention.

The study proposes the development of a novel probe to assess clearance of a nutritional metabolite in a given disease state. The probe is a GMP grade, deuterated, intravenously administered tracer and clearance is assessed by mass spectrometry analysis of serial blood draws. Participants will either receive a micronutrient supplement or will receive no supplementation. The clearance rate of the probe will be compared in the two groups, to understand the performance of the probe.

  • Are the participants prospectively assigned to an intervention? Yes, the participants are assigned to receive either a micronutrient supplement or nothing.
  • Is the study designed to evaluate the effect of the intervention on the participants? No, the intervention is being used to assess the performance of the probe and is not looking at an effect on the participant.
  • Are the participants prospectively assigned to an intervention? Yes, the participants are assigned to receive a controlled diet for three days.
  • Is the study designed to evaluate the effect of the intervention on the participants? No, the intervention (controlled diet) is being used to minimize exogenous dietary sources of oxalate in the participants prior to the labeled tracer infusion. The study will not be evaluating the effect of the diet on the participants.

This page last updated on: April 28, 2021

  • Bookmark & Share
  • E-mail Updates
  • Help Downloading Files
  • Privacy Notice
  • Accessibility
  • National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, Maryland 20892
  • NIH... Turning Discovery Into Health

Center for Teaching

Case studies.

Print Version

Case studies are stories that are used as a teaching tool to show the application of a theory or concept to real situations. Dependent on the goal they are meant to fulfill, cases can be fact-driven and deductive where there is a correct answer, or they can be context driven where multiple solutions are possible. Various disciplines have employed case studies, including humanities, social sciences, sciences, engineering, law, business, and medicine. Good cases generally have the following features: they tell a good story, are recent, include dialogue, create empathy with the main characters, are relevant to the reader, serve a teaching function, require a dilemma to be solved, and have generality.

Instructors can create their own cases or can find cases that already exist. The following are some things to keep in mind when creating a case:

  • What do you want students to learn from the discussion of the case?
  • What do they already know that applies to the case?
  • What are the issues that may be raised in discussion?
  • How will the case and discussion be introduced?
  • What preparation is expected of students? (Do they need to read the case ahead of time? Do research? Write anything?)
  • What directions do you need to provide students regarding what they are supposed to do and accomplish?
  • Do you need to divide students into groups or will they discuss as the whole class?
  • Are you going to use role-playing or facilitators or record keepers? If so, how?
  • What are the opening questions?
  • How much time is needed for students to discuss the case?
  • What concepts are to be applied/extracted during the discussion?
  • How will you evaluate students?

To find other cases that already exist, try the following websites:

  • The National Center for Case Study Teaching in Science , University of Buffalo. SUNY-Buffalo maintains this set of links to other case studies on the web in disciplines ranging from engineering and ethics to sociology and business
  • A Journal of Teaching Cases in Public Administration and Public Policy , University of Washington

For more information:

  • World Association for Case Method Research and Application

Book Review :  Teaching and the Case Method , 3rd ed., vols. 1 and 2, by Louis Barnes, C. Roland (Chris) Christensen, and Abby Hansen. Harvard Business School Press, 1994; 333 pp. (vol 1), 412 pp. (vol 2).

Creative Commons License

Teaching Guides

  • Online Course Development Resources
  • Principles & Frameworks
  • Pedagogies & Strategies
  • Reflecting & Assessing
  • Challenges & Opportunities
  • Populations & Contexts

Quick Links

  • Services for Departments and Schools
  • Examples of Online Instructional Modules

Case Companion

Brought to you by:

Harvard Business Publishing

Case Companion

By: Michael A. Roberto

Case Companion is an engaging and interactive introduction to case study analysis that is ideal for undergraduates or any student new to learning with cases. It is designed to increase students'…

  • Length: 1 hour
  • Publication Date: Jun 30, 2022
  • Discipline: Teaching & the Case Method
  • Product #: 7886-HTM-ENG

$5.00 per student

degree granting course

$9.00 per student

non-degree granting course

Get access to this material, plus much more with a free Educator Account:

  • Access to world-famous HBS cases
  • Up to 60% off materials for your students
  • Resources for teaching online
  • Tips and reviews from other Educators

Already registered? Sign in

  • Student Registration
  • Non-Academic Registration

Now available in English, Spanish, Chinese, Portuguese, and Japanese.

Case Companion is an engaging and interactive introduction to case study analysis that is ideal for undergraduates or any student new to learning with cases. It is designed to increase students' analytical skills and to help them learn to make decisions under uncertainty. The tutorial includes six videos that offer step-by-step coaching and address the question "Why learn with cases studies?" It also provides a basic framework that can be applied to any case. Students practice applying this framework throughout the tutorial with an example case. Students learn to perform a situational analysis, identify relevant evidence, interpret data, apply business concepts, reach a conclusion, and recommend a solution. Designed to be completed in under an hour, Case Companion is hands-on and approachable for students. It can be completed on mobile or desktop devices.

Learning Objectives

Learn to perform a situational analysis

Learn to identify relevant evidence

Learn to interpret data, figures, and exhibits

Learn to apply business concepts

Learn to prepare recommendations

Jun 30, 2022

Discipline:

Teaching & the Case Method

Harvard Business Publishing

7886-HTM-ENG

We use cookies to understand how you use our site and to improve your experience, including personalizing content. Learn More . By continuing to use our site, you accept our use of cookies and revised Privacy Policy .

case study 3 htm

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

What Is a Case Study?

Weighing the pros and cons of this method of research

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

case study 3 htm

Cara Lustik is a fact-checker and copywriter.

case study 3 htm

Verywell / Colleen Tighe

  • Pros and Cons

What Types of Case Studies Are Out There?

Where do you find data for a case study, how do i write a psychology case study.

A case study is an in-depth study of one person, group, or event. In a case study, nearly every aspect of the subject's life and history is analyzed to seek patterns and causes of behavior. Case studies can be used in many different fields, including psychology, medicine, education, anthropology, political science, and social work.

The point of a case study is to learn as much as possible about an individual or group so that the information can be generalized to many others. Unfortunately, case studies tend to be highly subjective, and it is sometimes difficult to generalize results to a larger population.

While case studies focus on a single individual or group, they follow a format similar to other types of psychology writing. If you are writing a case study, we got you—here are some rules of APA format to reference.  

At a Glance

A case study, or an in-depth study of a person, group, or event, can be a useful research tool when used wisely. In many cases, case studies are best used in situations where it would be difficult or impossible for you to conduct an experiment. They are helpful for looking at unique situations and allow researchers to gather a lot of˜ information about a specific individual or group of people. However, it's important to be cautious of any bias we draw from them as they are highly subjective.

What Are the Benefits and Limitations of Case Studies?

A case study can have its strengths and weaknesses. Researchers must consider these pros and cons before deciding if this type of study is appropriate for their needs.

One of the greatest advantages of a case study is that it allows researchers to investigate things that are often difficult or impossible to replicate in a lab. Some other benefits of a case study:

  • Allows researchers to capture information on the 'how,' 'what,' and 'why,' of something that's implemented
  • Gives researchers the chance to collect information on why one strategy might be chosen over another
  • Permits researchers to develop hypotheses that can be explored in experimental research

On the other hand, a case study can have some drawbacks:

  • It cannot necessarily be generalized to the larger population
  • Cannot demonstrate cause and effect
  • It may not be scientifically rigorous
  • It can lead to bias

Researchers may choose to perform a case study if they want to explore a unique or recently discovered phenomenon. Through their insights, researchers develop additional ideas and study questions that might be explored in future studies.

It's important to remember that the insights from case studies cannot be used to determine cause-and-effect relationships between variables. However, case studies may be used to develop hypotheses that can then be addressed in experimental research.

Case Study Examples

There have been a number of notable case studies in the history of psychology. Much of  Freud's work and theories were developed through individual case studies. Some great examples of case studies in psychology include:

  • Anna O : Anna O. was a pseudonym of a woman named Bertha Pappenheim, a patient of a physician named Josef Breuer. While she was never a patient of Freud's, Freud and Breuer discussed her case extensively. The woman was experiencing symptoms of a condition that was then known as hysteria and found that talking about her problems helped relieve her symptoms. Her case played an important part in the development of talk therapy as an approach to mental health treatment.
  • Phineas Gage : Phineas Gage was a railroad employee who experienced a terrible accident in which an explosion sent a metal rod through his skull, damaging important portions of his brain. Gage recovered from his accident but was left with serious changes in both personality and behavior.
  • Genie : Genie was a young girl subjected to horrific abuse and isolation. The case study of Genie allowed researchers to study whether language learning was possible, even after missing critical periods for language development. Her case also served as an example of how scientific research may interfere with treatment and lead to further abuse of vulnerable individuals.

Such cases demonstrate how case research can be used to study things that researchers could not replicate in experimental settings. In Genie's case, her horrific abuse denied her the opportunity to learn a language at critical points in her development.

This is clearly not something researchers could ethically replicate, but conducting a case study on Genie allowed researchers to study phenomena that are otherwise impossible to reproduce.

There are a few different types of case studies that psychologists and other researchers might use:

  • Collective case studies : These involve studying a group of individuals. Researchers might study a group of people in a certain setting or look at an entire community. For example, psychologists might explore how access to resources in a community has affected the collective mental well-being of those who live there.
  • Descriptive case studies : These involve starting with a descriptive theory. The subjects are then observed, and the information gathered is compared to the pre-existing theory.
  • Explanatory case studies : These   are often used to do causal investigations. In other words, researchers are interested in looking at factors that may have caused certain things to occur.
  • Exploratory case studies : These are sometimes used as a prelude to further, more in-depth research. This allows researchers to gather more information before developing their research questions and hypotheses .
  • Instrumental case studies : These occur when the individual or group allows researchers to understand more than what is initially obvious to observers.
  • Intrinsic case studies : This type of case study is when the researcher has a personal interest in the case. Jean Piaget's observations of his own children are good examples of how an intrinsic case study can contribute to the development of a psychological theory.

The three main case study types often used are intrinsic, instrumental, and collective. Intrinsic case studies are useful for learning about unique cases. Instrumental case studies help look at an individual to learn more about a broader issue. A collective case study can be useful for looking at several cases simultaneously.

The type of case study that psychology researchers use depends on the unique characteristics of the situation and the case itself.

There are a number of different sources and methods that researchers can use to gather information about an individual or group. Six major sources that have been identified by researchers are:

  • Archival records : Census records, survey records, and name lists are examples of archival records.
  • Direct observation : This strategy involves observing the subject, often in a natural setting . While an individual observer is sometimes used, it is more common to utilize a group of observers.
  • Documents : Letters, newspaper articles, administrative records, etc., are the types of documents often used as sources.
  • Interviews : Interviews are one of the most important methods for gathering information in case studies. An interview can involve structured survey questions or more open-ended questions.
  • Participant observation : When the researcher serves as a participant in events and observes the actions and outcomes, it is called participant observation.
  • Physical artifacts : Tools, objects, instruments, and other artifacts are often observed during a direct observation of the subject.

If you have been directed to write a case study for a psychology course, be sure to check with your instructor for any specific guidelines you need to follow. If you are writing your case study for a professional publication, check with the publisher for their specific guidelines for submitting a case study.

Here is a general outline of what should be included in a case study.

Section 1: A Case History

This section will have the following structure and content:

Background information : The first section of your paper will present your client's background. Include factors such as age, gender, work, health status, family mental health history, family and social relationships, drug and alcohol history, life difficulties, goals, and coping skills and weaknesses.

Description of the presenting problem : In the next section of your case study, you will describe the problem or symptoms that the client presented with.

Describe any physical, emotional, or sensory symptoms reported by the client. Thoughts, feelings, and perceptions related to the symptoms should also be noted. Any screening or diagnostic assessments that are used should also be described in detail and all scores reported.

Your diagnosis : Provide your diagnosis and give the appropriate Diagnostic and Statistical Manual code. Explain how you reached your diagnosis, how the client's symptoms fit the diagnostic criteria for the disorder(s), or any possible difficulties in reaching a diagnosis.

Section 2: Treatment Plan

This portion of the paper will address the chosen treatment for the condition. This might also include the theoretical basis for the chosen treatment or any other evidence that might exist to support why this approach was chosen.

  • Cognitive behavioral approach : Explain how a cognitive behavioral therapist would approach treatment. Offer background information on cognitive behavioral therapy and describe the treatment sessions, client response, and outcome of this type of treatment. Make note of any difficulties or successes encountered by your client during treatment.
  • Humanistic approach : Describe a humanistic approach that could be used to treat your client, such as client-centered therapy . Provide information on the type of treatment you chose, the client's reaction to the treatment, and the end result of this approach. Explain why the treatment was successful or unsuccessful.
  • Psychoanalytic approach : Describe how a psychoanalytic therapist would view the client's problem. Provide some background on the psychoanalytic approach and cite relevant references. Explain how psychoanalytic therapy would be used to treat the client, how the client would respond to therapy, and the effectiveness of this treatment approach.
  • Pharmacological approach : If treatment primarily involves the use of medications, explain which medications were used and why. Provide background on the effectiveness of these medications and how monotherapy may compare with an approach that combines medications with therapy or other treatments.

This section of a case study should also include information about the treatment goals, process, and outcomes.

When you are writing a case study, you should also include a section where you discuss the case study itself, including the strengths and limitiations of the study. You should note how the findings of your case study might support previous research. 

In your discussion section, you should also describe some of the implications of your case study. What ideas or findings might require further exploration? How might researchers go about exploring some of these questions in additional studies?

Need More Tips?

Here are a few additional pointers to keep in mind when formatting your case study:

  • Never refer to the subject of your case study as "the client." Instead, use their name or a pseudonym.
  • Read examples of case studies to gain an idea about the style and format.
  • Remember to use APA format when citing references .

Crowe S, Cresswell K, Robertson A, Huby G, Avery A, Sheikh A. The case study approach .  BMC Med Res Methodol . 2011;11:100.

Crowe S, Cresswell K, Robertson A, Huby G, Avery A, Sheikh A. The case study approach . BMC Med Res Methodol . 2011 Jun 27;11:100. doi:10.1186/1471-2288-11-100

Gagnon, Yves-Chantal.  The Case Study as Research Method: A Practical Handbook . Canada, Chicago Review Press Incorporated DBA Independent Pub Group, 2010.

Yin, Robert K. Case Study Research and Applications: Design and Methods . United States, SAGE Publications, 2017.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Leading with Cultural Intelligence

Table of contents, licensing information, introduction: a global community, chapter 1: culturally intelligent leadership matters.

  • The Difference between Managers and Leaders
  • Importance of Leadership in a Global Economy
  • Chapter Summary

Chapter 2: Understanding Culture

  • Cultural Systems
  • What is Culture?
  • Culture is Learned
  • Culture is Shared
  • Culture is Dynamic
  • Culture is Systemic
  • Culture is Symbolic
  • Stereotypes and Generalizations
  • Levels of Culture
  • The Roots of Culture
  • Value Dimensions of Culture
  • Culture and Leadership

Chapter 3: Cultural Intelligence Defined

  • What is Cultural Intelligence?
  • Cultural Intelligence Model
  • What Makes Cultural Intelligence Unique?
  • The Labyrinth of Cultural Intelligence

Chapter 4: Thinking About Thinking

  • What is Cognition?
  • What is Metacognition?
  • Techniques for Developing Strategic Thinking
  • Cultural Strategic Thinking Techniques

Chapter 5: I Think I Can and I Will

  • What is Self-Efficacy?
  • The Role of Self-Efficacy in Cultural Intelligence
  • Emotional Intelligence and Self-Efficacy
  • Mindfulness and Self-Efficacy
  • Mindlessness and Self-Efficacy
  • Developing Your Self-Efficacy

Chapter 6: Adapting and Performing

  • Concept of Self
  • Cognitive Dissonance
  • Linguistic Relativity
  • Behavior and Communication
  • Changing Behaviors, Changing Minds
  • Changing Minds Through Storytelling

Chapter 7: Cultural Intelligence in Action

  • Chapter Introduction
  • Case Study 1: Resistance to Change
  • Case Study 2: Young, Confident, and Moving too Fast
  • Case Study 3: Building a Multicultural Team—Is it Worth it?
  • Case Study 4: A New Leadership Culture
  • Case Study 5: Marketing the Right Messages
  • Case Study 6: On Opposite Political Sides
  • Case Study 7: From Hometown to Global Village
  • Case Study 8: No Dogs Allowed
  • Case Study 9: Faith and Health
  • Case Study 10: An Old Boy’s Club

Chapter 8: The Future of Cultural Intelligence

  • Adaptive Work
  • Interdependency
  • Consciousness
  • A Return to the Cultural Labyrinth

case study 3 htm

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is a Case Study? | Definition, Examples & Methods

What Is a Case Study? | Definition, Examples & Methods

Published on May 8, 2019 by Shona McCombes . Revised on November 20, 2023.

A case study is a detailed study of a specific subject, such as a person, group, place, event, organization, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research.

A case study research design usually involves qualitative methods , but quantitative methods are sometimes also used. Case studies are good for describing , comparing, evaluating and understanding different aspects of a research problem .

Table of contents

When to do a case study, step 1: select a case, step 2: build a theoretical framework, step 3: collect your data, step 4: describe and analyze the case, other interesting articles.

A case study is an appropriate research design when you want to gain concrete, contextual, in-depth knowledge about a specific real-world subject. It allows you to explore the key characteristics, meanings, and implications of the case.

Case studies are often a good choice in a thesis or dissertation . They keep your project focused and manageable when you don’t have the time or resources to do large-scale research.

You might use just one complex case study where you explore a single subject in depth, or conduct multiple case studies to compare and illuminate different aspects of your research problem.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Once you have developed your problem statement and research questions , you should be ready to choose the specific case that you want to focus on. A good case study should have the potential to:

  • Provide new or unexpected insights into the subject
  • Challenge or complicate existing assumptions and theories
  • Propose practical courses of action to resolve a problem
  • Open up new directions for future research

TipIf your research is more practical in nature and aims to simultaneously investigate an issue as you solve it, consider conducting action research instead.

Unlike quantitative or experimental research , a strong case study does not require a random or representative sample. In fact, case studies often deliberately focus on unusual, neglected, or outlying cases which may shed new light on the research problem.

Example of an outlying case studyIn the 1960s the town of Roseto, Pennsylvania was discovered to have extremely low rates of heart disease compared to the US average. It became an important case study for understanding previously neglected causes of heart disease.

However, you can also choose a more common or representative case to exemplify a particular category, experience or phenomenon.

Example of a representative case studyIn the 1920s, two sociologists used Muncie, Indiana as a case study of a typical American city that supposedly exemplified the changing culture of the US at the time.

While case studies focus more on concrete details than general theories, they should usually have some connection with theory in the field. This way the case study is not just an isolated description, but is integrated into existing knowledge about the topic. It might aim to:

  • Exemplify a theory by showing how it explains the case under investigation
  • Expand on a theory by uncovering new concepts and ideas that need to be incorporated
  • Challenge a theory by exploring an outlier case that doesn’t fit with established assumptions

To ensure that your analysis of the case has a solid academic grounding, you should conduct a literature review of sources related to the topic and develop a theoretical framework . This means identifying key concepts and theories to guide your analysis and interpretation.

There are many different research methods you can use to collect data on your subject. Case studies tend to focus on qualitative data using methods such as interviews , observations , and analysis of primary and secondary sources (e.g., newspaper articles, photographs, official records). Sometimes a case study will also collect quantitative data.

Example of a mixed methods case studyFor a case study of a wind farm development in a rural area, you could collect quantitative data on employment rates and business revenue, collect qualitative data on local people’s perceptions and experiences, and analyze local and national media coverage of the development.

The aim is to gain as thorough an understanding as possible of the case and its context.

In writing up the case study, you need to bring together all the relevant aspects to give as complete a picture as possible of the subject.

How you report your findings depends on the type of research you are doing. Some case studies are structured like a standard scientific paper or thesis , with separate sections or chapters for the methods , results and discussion .

Others are written in a more narrative style, aiming to explore the case from various angles and analyze its meanings and implications (for example, by using textual analysis or discourse analysis ).

In all cases, though, make sure to give contextual details about the case, connect it back to the literature and theory, and discuss how it fits into wider patterns or debates.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). What Is a Case Study? | Definition, Examples & Methods. Scribbr. Retrieved February 16, 2024, from https://www.scribbr.com/methodology/case-study/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, primary vs. secondary sources | difference & examples, what is a theoretical framework | guide to organizing, what is action research | definition & examples, what is your plagiarism score.

Case Study Research Method in Psychology

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, Ph.D., is a qualified psychology teacher with over 18 years experience of working in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

Case studies are in-depth investigations of a person, group, event, or community. Typically, data is gathered from various sources using several methods (e.g., observations & interviews).

The case study research method originated in clinical medicine (the case history, i.e., the patient’s personal history). In psychology, case studies are often confined to the study of a particular individual.

The information is mainly biographical and relates to events in the individual’s past (i.e., retrospective), as well as to significant events that are currently occurring in his or her everyday life.

The case study is not a research method, but researchers select methods of data collection and analysis that will generate material suitable for case studies.

Freud (1909a, 1909b) conducted very detailed investigations into the private lives of his patients in an attempt to both understand and help them overcome their illnesses.

This makes it clear that the case study is a method that should only be used by a psychologist, therapist, or psychiatrist, i.e., someone with a professional qualification.

There is an ethical issue of competence. Only someone qualified to diagnose and treat a person can conduct a formal case study relating to atypical (i.e., abnormal) behavior or atypical development.

case study

 Famous Case Studies

  • Anna O – One of the most famous case studies, documenting psychoanalyst Josef Breuer’s treatment of “Anna O” (real name Bertha Pappenheim) for hysteria in the late 1800s using early psychoanalytic theory.
  • Little Hans – A child psychoanalysis case study published by Sigmund Freud in 1909 analyzing his five-year-old patient Herbert Graf’s house phobia as related to the Oedipus complex.
  • Bruce/Brenda – Gender identity case of the boy (Bruce) whose botched circumcision led psychologist John Money to advise gender reassignment and raise him as a girl (Brenda) in the 1960s.
  • Genie Wiley – Linguistics/psychological development case of the victim of extreme isolation abuse who was studied in 1970s California for effects of early language deprivation on acquiring speech later in life.
  • Phineas Gage – One of the most famous neuropsychology case studies analyzes personality changes in railroad worker Phineas Gage after an 1848 brain injury involving a tamping iron piercing his skull.

Clinical Case Studies

  • Studying the effectiveness of psychotherapy approaches with an individual patient
  • Assessing and treating mental illnesses like depression, anxiety disorders, PTSD
  • Neuropsychological cases investigating brain injuries or disorders

Child Psychology Case Studies

  • Studying psychological development from birth through adolescence
  • Cases of learning disabilities, autism spectrum disorders, ADHD
  • Effects of trauma, abuse, deprivation on development

Types of Case Studies

  • Explanatory case studies : Used to explore causation in order to find underlying principles. Helpful for doing qualitative analysis to explain presumed causal links.
  • Exploratory case studies : Used to explore situations where an intervention being evaluated has no clear set of outcomes. It helps define questions and hypotheses for future research.
  • Descriptive case studies : Describe an intervention or phenomenon and the real-life context in which it occurred. It is helpful for illustrating certain topics within an evaluation.
  • Multiple-case studies : Used to explore differences between cases and replicate findings across cases. Helpful for comparing and contrasting specific cases.
  • Intrinsic : Used to gain a better understanding of a particular case. Helpful for capturing the complexity of a single case.
  • Collective : Used to explore a general phenomenon using multiple case studies. Helpful for jointly studying a group of cases in order to inquire into the phenomenon.

Where Do You Find Data for a Case Study?

There are several places to find data for a case study. The key is to gather data from multiple sources to get a complete picture of the case and corroborate facts or findings through triangulation of evidence. Most of this information is likely qualitative (i.e., verbal description rather than measurement), but the psychologist might also collect numerical data.

1. Primary sources

  • Interviews – Interviewing key people related to the case to get their perspectives and insights. The interview is an extremely effective procedure for obtaining information about an individual, and it may be used to collect comments from the person’s friends, parents, employer, workmates, and others who have a good knowledge of the person, as well as to obtain facts from the person him or herself.
  • Observations – Observing behaviors, interactions, processes, etc., related to the case as they unfold in real-time.
  • Documents & Records – Reviewing private documents, diaries, public records, correspondence, meeting minutes, etc., relevant to the case.

2. Secondary sources

  • News/Media – News coverage of events related to the case study.
  • Academic articles – Journal articles, dissertations etc. that discuss the case.
  • Government reports – Official data and records related to the case context.
  • Books/films – Books, documentaries or films discussing the case.

3. Archival records

Searching historical archives, museum collections and databases to find relevant documents, visual/audio records related to the case history and context.

Public archives like newspapers, organizational records, photographic collections could all include potentially relevant pieces of information to shed light on attitudes, cultural perspectives, common practices and historical contexts related to psychology.

4. Organizational records

Organizational records offer the advantage of often having large datasets collected over time that can reveal or confirm psychological insights.

Of course, privacy and ethical concerns regarding confidential data must be navigated carefully.

However, with proper protocols, organizational records can provide invaluable context and empirical depth to qualitative case studies exploring the intersection of psychology and organizations.

  • Organizational/industrial psychology research : Organizational records like employee surveys, turnover/retention data, policies, incident reports etc. may provide insight into topics like job satisfaction, workplace culture and dynamics, leadership issues, employee behaviors etc.
  • Clinical psychology : Therapists/hospitals may grant access to anonymized medical records to study aspects like assessments, diagnoses, treatment plans etc. This could shed light on clinical practices.
  • School psychology : Studies could utilize anonymized student records like test scores, grades, disciplinary issues, and counseling referrals to study child development, learning barriers, effectiveness of support programs, and more.

How do I Write a Case Study in Psychology?

Follow specified case study guidelines provided by a journal or your psychology tutor. General components of clinical case studies include: background, symptoms, assessments, diagnosis, treatment, and outcomes. Interpreting the information means the researcher decides what to include or leave out. A good case study should always clarify which information is the factual description and which is an inference or the researcher’s opinion.

1. Introduction

  • Provide background on the case context and why it is of interest, presenting background information like demographics, relevant history, and presenting problem.
  • Compare briefly to similar published cases if applicable. Clearly state the focus/importance of the case.

2. Case Presentation

  • Describe the presenting problem in detail, including symptoms, duration,and impact on daily life.
  • Include client demographics like age and gender, information about social relationships, and mental health history.
  • Describe all physical, emotional, and/or sensory symptoms reported by the client.
  • Use patient quotes to describe the initial complaint verbatim. Follow with full-sentence summaries of relevant history details gathered, including key components that led to a working diagnosis.
  • Summarize clinical exam results, namely orthopedic/neurological tests, imaging, lab tests, etc. Note actual results rather than subjective conclusions. Provide images if clearly reproducible/anonymized.
  • Clearly state the working diagnosis or clinical impression before transitioning to management.

3. Management and Outcome

  • Indicate the total duration of care and number of treatments given over what timeframe. Use specific names/descriptions for any therapies/interventions applied.
  • Present the results of the intervention,including any quantitative or qualitative data collected.
  • For outcomes, utilize visual analog scales for pain, medication usage logs, etc., if possible. Include patient self-reports of improvement/worsening of symptoms. Note the reason for discharge/end of care.

4. Discussion

  • Analyze the case, exploring contributing factors, limitations of the study, and connections to existing research.
  • Analyze the effectiveness of the intervention,considering factors like participant adherence, limitations of the study, and potential alternative explanations for the results.
  • Identify any questions raised in the case analysis and relate insights to established theories and current research if applicable. Avoid definitive claims about physiological explanations.
  • Offer clinical implications, and suggest future research directions.

5. Additional Items

  • Thank specific assistants for writing support only. No patient acknowledgments.
  • References should directly support any key claims or quotes included.
  • Use tables/figures/images only if substantially informative. Include permissions and legends/explanatory notes.
  • Provides detailed (rich qualitative) information.
  • Provides insight for further research.
  • Permitting investigation of otherwise impractical (or unethical) situations.

Case studies allow a researcher to investigate a topic in far more detail than might be possible if they were trying to deal with a large number of research participants (nomothetic approach) with the aim of ‘averaging’.

Because of their in-depth, multi-sided approach, case studies often shed light on aspects of human thinking and behavior that would be unethical or impractical to study in other ways.

Research that only looks into the measurable aspects of human behavior is not likely to give us insights into the subjective dimension of experience, which is important to psychoanalytic and humanistic psychologists.

Case studies are often used in exploratory research. They can help us generate new ideas (that might be tested by other methods). They are an important way of illustrating theories and can help show how different aspects of a person’s life are related to each other.

The method is, therefore, important for psychologists who adopt a holistic point of view (i.e., humanistic psychologists ).

Limitations

  • Lacking scientific rigor and providing little basis for generalization of results to the wider population.
  • Researchers’ own subjective feelings may influence the case study (researcher bias).
  • Difficult to replicate.
  • Time-consuming and expensive.
  • The volume of data, together with the time restrictions in place, impacted the depth of analysis that was possible within the available resources.

Because a case study deals with only one person/event/group, we can never be sure if the case study investigated is representative of the wider body of “similar” instances. This means the conclusions drawn from a particular case may not be transferable to other settings.

Because case studies are based on the analysis of qualitative (i.e., descriptive) data , a lot depends on the psychologist’s interpretation of the information she has acquired.

This means that there is a lot of scope for Anna O , and it could be that the subjective opinions of the psychologist intrude in the assessment of what the data means.

For example, Freud has been criticized for producing case studies in which the information was sometimes distorted to fit particular behavioral theories (e.g., Little Hans ).

This is also true of Money’s interpretation of the Bruce/Brenda case study (Diamond, 1997) when he ignored evidence that went against his theory.

Breuer, J., & Freud, S. (1895).  Studies on hysteria . Standard Edition 2: London.

Curtiss, S. (1981). Genie: The case of a modern wild child .

Diamond, M., & Sigmundson, K. (1997). Sex Reassignment at Birth: Long-term Review and Clinical Implications. Archives of Pediatrics & Adolescent Medicine , 151(3), 298-304

Freud, S. (1909a). Analysis of a phobia of a five year old boy. In The Pelican Freud Library (1977), Vol 8, Case Histories 1, pages 169-306

Freud, S. (1909b). Bemerkungen über einen Fall von Zwangsneurose (Der “Rattenmann”). Jb. psychoanal. psychopathol. Forsch ., I, p. 357-421; GW, VII, p. 379-463; Notes upon a case of obsessional neurosis, SE , 10: 151-318.

Harlow J. M. (1848). Passage of an iron rod through the head.  Boston Medical and Surgical Journal, 39 , 389–393.

Harlow, J. M. (1868).  Recovery from the Passage of an Iron Bar through the Head .  Publications of the Massachusetts Medical Society. 2  (3), 327-347.

Money, J., & Ehrhardt, A. A. (1972).  Man & Woman, Boy & Girl : The Differentiation and Dimorphism of Gender Identity from Conception to Maturity. Baltimore, Maryland: Johns Hopkins University Press.

Money, J., & Tucker, P. (1975). Sexual signatures: On being a man or a woman.

Further Information

  • Case Study Approach
  • Case Study Method
  • Enhancing the Quality of Case Studies in Health Services Research
  • “We do things together” A case study of “couplehood” in dementia
  • Using mixed methods for evaluating an integrative approach to cancer care: a case study

Print Friendly, PDF & Email

Open Menu

Developing Educational Case Studies

Case studies can be used in education as a teaching tool. Many students learn better using real-life examples, and case studies can be an effective way to learn in the classroom.

Case studies have a history of being used in business schools, law schools, medical schools, and other master programs. These cases can come in different forms, with some being basic "what would you do?" type questions, and some being very detailed and requiring data analysis.

Assignments and homework for these types of studies usually require students to answer open-ended questions about a possible solution to a problem. Usually these projects are done by a group of students, as group learning is often more effective.

What Are Case Studies?

A case is basically a story. A case recounts events or problems in a way that students can learn from their complexities and ambiguities. The students can learn from the original participants in the case, whether it is business people, doctors, or other professionals.

The students are able to take over a case, and dissect key information in order to find solutions to the problems. This allows students to be able to:

1. Determine pertinent information

2. Identify the problem and its parameters

3. Identify possible solutions

4. Form strategies and ideas for action

5. Make decisions to fix the problems

The History of the Case Study Method

The founder of the case study method was Christopher Langdell, who attended Harvard Law School from 1851-1854. He was very studious, and spent most of his time in the library. This is when he started to formulate the case method.

At the time, law schools used the Dwight Method of teaching, which was a combination of lecture, recitations and drills. This method focused highly on memorization, and didn't allow for much actual learning, just rote repetitions.

Langdell's method was completely different. He required his students to only read cases, and to draw their own conclusions. To help them, he published sets of cases with a short introduction.

Narrative Case Studies

Narrative case studies use a comprehensive history of a problem, along with the several parts of the typical case study, to teach using the case method. With this method students try to find better solutions to problems, and find ways to analyze why their chosen solution is best.

An example of a narrative case study is the Tylenol cyanide scandal. In 1982 seven people died after ingesting Tylenol tablets laced with cyanide.

Almost immediately Tylenol's market share dropped from 37% to 7%. Johnson & Johnson, the parent company had to work quickly to save the product. They reintroduced the product with tamper resistant packaging and a large media campaign.

Johnson & Johnson was successful. The Tylenol brand recovered and regained customer trust.

The Tylenol Scandal case study details everything that happened from beginning to end. It also details each step J&J took when turning the scandal around…both positive and negative steps.

This case study is now used in business, marketing, crisis management and other disciplines to help them solve their own problems. They can look at what J&J did to solve their problems, and use that information to fix their own issues.

As a teaching tool, this case study allows the students to analyze each step Johnson & Johnson went through, and whether or not any other solutions were possible.

Decision-Forming Case

A decision-forcing case doesn't provide an outcome, and therefore forces the students to determine an outcome on their own. Often these cases have an epilogue, which completes the story.

The formats of these cases can vary. They can be standard written cases, PowerPoint presentations, movies or movie clips, or even TV or news stories. Regardless of the type of case, they all:

llustrate the issues typical to the type of case study

Show theoretical frameworks

Leave out assumptions

Show realistic ambiguities and tensions.

Common Case Elements

Most cases, whether legal, business, or other, have the same common elements. These are:

1. A decision maker who has a problem that needs to be solved.

2. A description of the context of the problem.

3 . Data that supports the study, which could include interviews, documents or images.

Case studies can be done individually, but are usually done in a small group so students can problem solve together as a team.

The Case Study Method

The case study method is two-parted. One part is the case itself, and other part is the discussion of the case. Case studies are chosen for teaching based on how rich the narrative is, and whether the people in the study are required to make a decision or solve a problem.

When using case studies, the focus is not on the data or the analysis. The students analyze the case and try to find ways to find solutions and solve problems. This method is most often used in groups, with a focus on classroom discussion.

When students are given a study by a teacher, they should attack each case with the following checklist.

1. Thoroughly read the case and formulate your own opinions before sharing ideas with others in your group or class. You must be able to identify the problems on your own, as well as be able to offer solutions and alternatives. Before the study is discussed with the group, you must be able to form your own outline and course of action.

2. Once you have a clear understanding of the case, you can share your ideas with other members of your group.

3. Open discussion of the case and listen to the input of others in your group and class.

4. Reflect back on how your original ideas changed as a result of the group discussion.

Teaching the Case Method

Professors have several ways to use case studies in the classroom. The first way is as an adjunct to normal lectures. A lecture might discuss a certain facet of business, and the case study can be used to backup the information learned in the lecture.

This type of teaching doesn't require large case studies, and can get by using excerpts and other extractions. The benefits of this method are that it only needs little preparation, and is a great way to introduce case studies into the classroom.

The second way is to use the case studies to challenge the student's solutions, and help them formulate new strategies. This is the typical case study method. Students work together to formulate solutions and conclusions, and allow students to learn from each other.

Gaining Skills With The Case Method

The case method is an excellent way for students to learn new cognitive skills, as well as improve their analysis and evaluation skills. Here is a list of the skills that can be improved, and how the case method helps this process.

Knowledge – This is the student's ability to remember information and ability to recall it.

Comprehension – This is the student's ability to understand what they are learning. The case method helps this by using examples in a real-world context.

Application – This is the student's ability to use their knowledge in new ways. This could mean new rules, ideas or theories. The case method helps students understand how these ideas and theories are used in the real world.

Analysis – This is the student's ability to break down information so it can be better understood. Since analysis is the basis of the case method, this skill is greatly improved.

Synthesis – This is the student's ability to form new ideas. Case studies help this skill by requiring them to identify new information and concepts. This is developed during group activities and discussions.

Evaluation – This is the student's ability to judge information for a particular reason. Again, this skill is a hallmark of the case study method, and the use of cases will help improve the student's evaluation skills.

Case Method Advantages

The largest advantage of the case study method is that students must actively and openly discuss the principals of the study. This helps develop their skills in:

Problem solving

Analysis, both quantitative and qualitative

Decision making

Dealing with ambiguities

Case Method Criticisms

While the case study method has been seen as a very successful way of learning, it does have its criticisms. Here is a list of some of the drawbacks of the learning method.

1. Students often fight for airtime, and may not fully think through their thoughts. Many students want to be first, and place more importance in that than being right. This results in analysis that is superficial and not well thought-out.

2. Students in business management courses don't always have the same background experience, and this can contribute to issues with experience.

3. The background information provided for the case analysis is often limited to whatever was supplied with the case.

4. If cases are too old, they may no longer be relevant. Cases that are older than 10 years shouldn't be used if possible. This is particularly the case with business studies, since changes occur quite frequently in the business world. For example, case studies that detail companies before the Internet are often out of date. You wouldn't want to study Barnes & Noble without knowing how eBooks affected their bottom line.

5. The case study method is not a good way to learn the technicals of finance and accounting. Not every MBA student has a strong background in accounting or finance, and vice versa. Furthermore, students don't always attend business school at the same time in their careers. Many students get their MBA's while in their 20's, while other students wait until they are in their 30's or 40's.

6. With the case method, there isn't a right or wrong answer. This can cause students to leave the lesson without key takeaways. In addition, this method cannot work for areas that have unique answers…this is why the case method would never work in physics or mathematics.

Those who disagree with the total case method teaching method believe the best alternative is a balance between cases and lectures.

The most recent iteration is a combination of both. They offer lectures to learn the fundamentals, and cases to determine whether or not the students understand the fundamentals enough to apply them to real-world situation.

The Case Study Method in Business School

Most top business schools use the case study method, including Harvard Business School. When students are given a case, they are required to be the decision maker, and they must read the study and identify the problems.

Once the problem has been identified, the student must analyze the situation and find solutions that can solve the problem. There can often be several possible solutions.

Students work in teams to solve the cases, discussing each facet of the case with their classmates. The teacher or instructor guides the students when necessary, and will often suggest courses of action when necessary.

Case Studies in Psychology and Social

Case studies are used in just about every discipline, from business, to the arts, and education. But case studies are most prevalent in psychology and the social sciences, where case studies form a strong basis for all other clinical and non-clinical research.

If you are studying psychology, a part of your education will include the use of case studies. Case studies are how we learn and expand our knowledge, and how we build on older ideas and theories and attempt to make them better.

The Most Well-Known Psychological Case Studies

One of the best ways to learn about and better understand psychological case studies is to read and familiarize yourself with the most well-known case studies. These are the studies that every psychology student will learn about.

The John-John case was a pioneering study about gender and sexuality. This is one of those unique cases that cannot be recreated.

John-John focused on a set of twin boys, both of whom were circumcised at the age of 6 months. One of the twin's circumcisions failed, causing irreparable damage to the penis. His parents were concerned about the sexual health of their son, so they contacted Dr. John Money for a solution.

What makes the John/John case study so valuable?

What can be learned about the psychological case study method itself?

Dr. Money believed that sexuality came from nurture, not nature, and that the injured baby, Bruce, could be raised as a girl. His penis was removed and he was sexually reassigned to become a girl. Bruce's name was changed to Brenda, and his parents decided to raise him as a girl.

In this case, Dr. Money was dishonest. He believed that gender could be changed, which has since been proven false. Brenda's parents were also dishonest, stating that the surgery was a success, when in fact that wasn't the case.

As Brenda grew up, she always acted masculine and was teased for it at school. She did not socialize as a girl, and did not identify as a female. When Brenda was 13 she learned the truth, and was incredibly relieved. She changed her name to David, and lived the rest of her life as a male.

Jill Price was believed to have a condition called hyperthymesia, which gave her a remarkable memory. She could remember the tiniest details, such as what she ate for lunch 10 years prior on a random Monday.

This condition caused her great harm because she focused on all the negative events in her life, even the small ones like derogatory remarks. Price participated in the study hoping it would help her deal with her condition.

Through the study, it was determined that Price wasn't a memory whiz, and that her abilities were completely blown out of proportion. She wasn't able to memorize lists of words or names. Her memory was focused only on events that were relevant to her. For example, she could remember famous dates, but only if they were relevant to her or her life.

Doctors also did brain scans, and through the study, determined that she had a form of obsessive-compulsive disorder, or OCD. Price was obsessed with the negative things that had happened to her in her life, and that obsession cause the increased memory in her instance.

Future research will have to be done to corroborate this theory.

H.M., the initials of Henry Molaison, is probably the most important case study in the field of neuroscience. HM was in a bike accident at the age of 9, and it caused brain damage that resulted in seizures.

In an attempt to end his seizures, surgeons removed small slivers of his brain from the hippocampus, which we now know is the area of the brain that is critical to memory. As a result of the surgery, HM was left with amnesia. He was unable to form new memories, and had issues remembering old memories.

This case study was the basis for future studies of human memory. Because of this study, we know that memory has two parts that work together. One part is located in the hippocampus, which is where facts and memories are stored. This one study revolutionized the study of the brain and memory.

Phineas Gage

Phineas Gage was a railroad worker who was injured in a workplace accident. He was packing gunpowder into a rock, and a spark caused the tampering iron to shoot through his cheek into his skull. His frontal lobe was damaged, but he survived the accident and was able to talk and walk immediately after.

The study was done about his personality, which immediately changed. He became short tempered and angry. He lost his friends, family, and his job. This study allowed researchers to study the frontal lobe and how it is involved in higher mental functions. It also proved that the brain was the basis for personality and behavior.

By now you are probably familiar with Genie case, and why it was such a breakthrough case study. Of all the case studies that exist, it is Genie that has allowed the most inroads to be made in the psychological field.

Genie was a feral child. She was raised in completed isolation, with little human contact. Because of the abuse she withstood, she was unable to develop cognitively. From infancy she was strapped to a potty chair, and therefore never acquired the physicality needed for walking, running and jumping.

If Genie made a noise, her father beat her. Therefore, she learned to not make a noise. Once she was found, researchers studied her language skills, and attempted to find ways to get her to communicate. They were successful. While she never gained the ability to speak, she did develop other ways to communicate. However, the public soon lost interest in her case, and with that, the funds to conduct the study.

However, her case was extremely important to child development psychology and linguistic theory. Because of her, we know that mental stimulation is needed for proper development. We also now know that there is a "critical period" for the learning of language.

The Most Well-Known Case Studies in Sociology

Sociology is a science much like psychology. In sociology, the study is of social behavior, how it originated, and how it exists today. Like most sciences, it isn't perfect, and therefore benefits from the use of case studies.

Sociological case studies have helped us identify problems in our culture, and have helped define possible solutions. Here are some of the most well-known studies in sociology, the ones that defined and shaped the field.

Fast Food Nation

Fast Food Nation is a book by Eric Schlosser, about how the fast food industry is related to the American life.

Americans love their fast food. It is said that most toddlers are able to identify the golden arches of McDonald's before they are able to read. Fast Food Nation uncovered some disturbing facts about the fast food industry. He discovered that fast food has widened the gap between rich and poor, and has contributed to the obesity epidemic.

His study details how much of this happened, and most of it is very unsettling.

The study also touched on other sociological issues, such as farming and ethics. Since fast food restaurants needed more beef than ever, cattle farmers would find ways to make bigger cows, and would find ways to own more cattle. This often led to overcrowding and poor care of the animals.

Milgram Obedience Studies

Stanley Milgram did a study from 1960 to 1974 in which he studied the effects of social pressure. The study was set up as an independent laboratory. A random person would walk in, and agree to be a part of the study. He was told to act as a teacher, and ask questions to another volunteer, who was the learner.

The teacher would ask the learner questions, and whenever he answered incorrectly, the teacher was instructed to give the learner an electric shock. Each time the learner was wrong, the shock would be increased by 15 volts. What the teacher didn't know was that the learner was a part of the experiment, and that no shocks were being given. However, the learner did act as if they were being shocked.

If the teacher tried to quit, they were strongly pushed to continue. The goal of the experiment was to see whether or not any of the teachers would go up to the highest voltage. As it turned out, 65% of the teachers did.

This study opened eyes when it comes to social pressure. If someone tells you it is okay to hurt someone, at what point will the person back off and say "this is not ok!" And in this study, the results were the same, regardless of income, race, gender or ethnicity.

Why are sociological case studies necessary? Name a sociological case study that has changed the way we think about culture today.

Nickel and Dimed

Nickel and Dimed is a book and study done by Barbara Ehrenreich. She wanted to study poverty in America, and did so by living and working as a person living on minimum wage.

She set up her experiment with three rules.

1. When looking for a job, she is unable to use her education or skills.

2. She had to take the highest paying job she gets, and do her best to keep it.

3. She had to take the cheapest housing she could find.

She lived in three cities in Florida, Maine and Minnesota.

Through her experiment, she discovered that poverty was almost inescapable. As soon as she saved a little money, she was hit with a crisis. She might get sick, or her car might break down, all occurrences that can be destructive when a person doesn't have a safety net to fall back on.

It didn't matter where she lived or what she did. Working a minimum wage job gave her no chances for advancement or improvement whatsoever. And she did the experiment as a woman with no children to support.

This study opened a lot of eyes to the problem of the working poor in America. By living and working as the experiment, Ehrenreich was able to show first-hand data regarding the issues surrounding poverty. The book didn't end with any solutions, just suggestions for the reader and points for them to think about.

The Culture of Fear

This study was written in 1999 by Barry Glassner, a professor of sociology at the University of Southern California. The study investigated why Americans are so engrossed with fear.

The study examined the organizations that caused the fear, and how they profited from the anxiety that resulted. Politicians, television news and magazine programs, were all found guilty of peddling fear, which causes people to worry needlessly and cost billions of dollars.

The study investigated why Americans have so many fears today, and why Americans are more fearful now than they were 20 years ago. Life is not more dangerous now than it was 20 years ago, and yet Americans are more afraid.

Glassner discovered that there are businesses and organizations that actually profit from these fears, and as such, find ways to create them. This of course leads to wasted money, time and resources.

Much of the blame is placed with the news media, who constantly inundates us with news stories that will increase their ratings. This is called the media-effects theory.

Internet Marketing: How To Deal with Personal Writings, Opinion Pieces and Blogs of Your CEO

  • Course Catalog
  • Group Discounts
  • Gift Certificates
  • For Libraries
  • CEU Verification
  • Medical Terminology
  • Accounting Course
  • Writing Basics
  • QuickBooks Training
  • Proofreading Class
  • Sensitivity Training
  • Excel Certificate
  • Teach Online
  • Terms of Service
  • Privacy Policy

Follow us on FaceBook

Classroom Approaches The Role of the Educator

Often teaching is turned into a performance where we feel we must be “the sage on the stage”. A major difference between teaching with decision cases and traditional approaches is that the teacher acts as a facilitator of the learning process rather than a performer.

Case teaching is not easy. A teacher must be able to think ahead, reorganize and listen at the same time. Case teaching is not a rambling process without focus. The teacher must have a plan in mind before beginning the case discussion. Seldom are two decision case discussions the same.

Preparing for Decision Case Discussions Objectives and Material

Preparing Objectives Objectives are vital to case teaching. They are the glue that hold the discussion together and prevents it from turning into a “bull session.” Familiarizing yourself with the material Decision case teaching requires students to reason from the facts presented in the case. They are more able to do this if the case teacher is sure of the facts and attempts to present the essential aspects of the case. A conceptual outline which parallels the objectives may be helpful. This helps the teacher think and prepare for various topics or concepts that may be covered during the discussion. However, a good discussion rarely proceeds in the logical pattern of a structured outline.

case study 3 htm

Preparing a question outline

Prepare a question outline to match the concept outline. Questioning is the single most important skill case teachers must develop. Questions should promote discussion about the concepts to be understood rather than solicit the correct answer. Most students have been trained to think there is only one right answer to a question. They think the teacher knows it and that they will be rewarded when they say it. This kind of mindset can kill case discussions. The best way to encourage creative answers is to phrase questions that do not call for right answers.

Teaching Socratically

Only when answers generate further questions does thought remain alive. Only students who have questions are really thinking and learning. The quality of the questions we ask determines the quality of the thinking we do.   Socratic questioning recognizes that questions, not answers, are the driving force in thinking.

Preparing for Decision Case Discussions

Foundation questions

There are five basic questions that serve as a foundation of case discussions:

What makes this case a dilemma? What are the objectives of the decision maker in resolving the dilemma? What are the issues involved in this case? What are the options of the decision maker? What decision should the decision maker make?

I t is helpful to think through these questions ahead of time and determine which points you would like to see discussed.

Using a board outline

An effective strategy for case teachers is to make use of the chalkboard to help organize discussions that may at times seem to be going off in many directions at once. By doing so, students will also have a chance to see their contributions to the discussion validated. Teachers can organize the outline by the key questions asked or by topic of the discussion. The Teaching Note may contain other options.

case study 3 htm

Arranging the Classroom

Most classrooms are arranged in rows so that the teacher is the focal point; however, this physical setting can stifle effective case teaching.

The ideal situation is to arrange the seats in a “U” or horseshoe shape so the students can easily see one another and the case teacher can get close to the students and move to the blackboard.

Special recognition:

These thoughts and examples were compiled from a variety of sources. Those sources include: Decision Cases for Secondary Education t, Brakke, Dunrud, Peterson, Marla Reicks, & Simmons with Bakkum, Bowman, Pitzl, and Stanford (1994) . College of Agriculture , University of Minnesota, Critical Thinking Website—Foundation for Critical Thinking , Methods of Teaching Agriculture , Newcomb, McCracken and Warmbrod (1993) and The Power of Positive Teaching , McCormick (1994).

W3.CSS Colors

Web building, w3.css case study, building a responsive web site from scratch.

In this chapter we will build a W3.CSS responsive website from scratch.

First, start with a simple HTML page, with an initial viewport and a link to W3.CSS.

Put Elements in Containers

To add common margins and padding, put the HTML elements inside containers (<div class="w3-container">)

Separate the header from the rest of the content, using two separate <div> elements:

Advertisement

Color Classes

Color classes defines the color of elements.

This example adds a color to the first <div> element:

Size Classes

Size classes defines the text size for elements.

This example adds a size to both header elements:

Use Semantic Elements

If you like to follow the HTML5 semantic recommendations. please do!

It does not matter for W3.CSS if you use <div> or <header>.

Multicolumn Responsive Layout

With W3.CSS it is easy to create a multicolumn responsive layout.

The columns will rearrange themselves automatically when viewed on different screen sizes.

Some grid rules:

  • Start with a row class <div class="w3-row-padding">
  • Use predefined classes like "w3-third" to quickly make grid columns
  • Place your text content inside the grid columns

This example shows how to create three columns of equal width:

This example shows how to create four columns of equal width:

Columns With Different Widths

This example creates a three-column layout where the column in the middle is wider than the first and last column:

Navigation Bars

A navigation bar is a navigation header that is placed at the top of the page.

Side Navigation

With side navigation, you have several options:

  • Always display the navigation pane to the left of the page content.
  • Use a collapsible, "fully automatic" responsive side navigation.
  • Open navigation pane over the left part of the page content.
  • Open navigation pane over all of the page content.
  • Slide the page content to the right when opening the navigation pane.
  • Display the navigation pane on the right side instead of the left side

This example opens the navigation pane over the left part of the page content:

JavaScript used to open and hide the menu:

Get Certified

COLOR PICKER

colorpicker

Report Error

If you want to report an error, or if you want to make a suggestion, do not hesitate to send us an e-mail:

[email protected]

Top Tutorials

Top references, top examples, get certified.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 14 February 2024

Critical transitions in the Amazon forest system

  • Bernardo M. Flores   ORCID: orcid.org/0000-0003-4555-5598 1 ,
  • Encarni Montoya   ORCID: orcid.org/0000-0002-4690-190X 2 ,
  • Boris Sakschewski   ORCID: orcid.org/0000-0002-7230-9723 3 ,
  • Nathália Nascimento   ORCID: orcid.org/0000-0003-4819-0811 4 ,
  • Arie Staal   ORCID: orcid.org/0000-0001-5409-1436 5 ,
  • Richard A. Betts   ORCID: orcid.org/0000-0002-4929-0307 6 , 7 ,
  • Carolina Levis   ORCID: orcid.org/0000-0002-8425-9479 1 ,
  • David M. Lapola 8 ,
  • Adriane Esquível-Muelbert   ORCID: orcid.org/0000-0001-5335-1259 9 , 10 ,
  • Catarina Jakovac   ORCID: orcid.org/0000-0002-8130-852X 11 ,
  • Carlos A. Nobre 4 ,
  • Rafael S. Oliveira   ORCID: orcid.org/0000-0002-6392-2526 12 ,
  • Laura S. Borma 13 ,
  • Da Nian   ORCID: orcid.org/0000-0002-2320-5223 3 ,
  • Niklas Boers   ORCID: orcid.org/0000-0002-1239-9034 3 , 14 ,
  • Susanna B. Hecht 15 ,
  • Hans ter Steege   ORCID: orcid.org/0000-0002-8738-2659 16 , 17 ,
  • Julia Arieira 18 ,
  • Isabella L. Lucas 19 ,
  • Erika Berenguer   ORCID: orcid.org/0000-0001-8157-8792 20 ,
  • José A. Marengo 21 , 22 , 23 ,
  • Luciana V. Gatti 13 ,
  • Caio R. C. Mattos   ORCID: orcid.org/0000-0002-8635-3901 24 &
  • Marina Hirota   ORCID: orcid.org/0000-0002-1958-3651 1 , 12 , 25  

Nature volume  626 ,  pages 555–564 ( 2024 ) Cite this article

20k Accesses

2352 Altmetric

Metrics details

  • Climate and Earth system modelling
  • Ecosystem ecology
  • Ecosystem services
  • Sustainability

The possibility that the Amazon forest system could soon reach a tipping point, inducing large-scale collapse, has raised global concern 1 , 2 , 3 . For 65 million years, Amazonian forests remained relatively resilient to climatic variability. Now, the region is increasingly exposed to unprecedented stress from warming temperatures, extreme droughts, deforestation and fires, even in central and remote parts of the system 1 . Long existing feedbacks between the forest and environmental conditions are being replaced by novel feedbacks that modify ecosystem resilience, increasing the risk of critical transition. Here we analyse existing evidence for five major drivers of water stress on Amazonian forests, as well as potential critical thresholds of those drivers that, if crossed, could trigger local, regional or even biome-wide forest collapse. By combining spatial information on various disturbances, we estimate that by 2050, 10% to 47% of Amazonian forests will be exposed to compounding disturbances that may trigger unexpected ecosystem transitions and potentially exacerbate regional climate change. Using examples of disturbed forests across the Amazon, we identify the three most plausible ecosystem trajectories, involving different feedbacks and environmental conditions. We discuss how the inherent complexity of the Amazon adds uncertainty about future dynamics, but also reveals opportunities for action. Keeping the Amazon forest resilient in the Anthropocene will depend on a combination of local efforts to end deforestation and degradation and to expand restoration, with global efforts to stop greenhouse gas emissions.

The Amazon forest is a complex system of interconnected species, ecosystems and human cultures that contributes to the well-being of people globally 1 . The Amazon forest holds more than 10% of Earth’s terrestrial biodiversity, stores an amount of carbon equivalent to 15–20 years of global CO 2 emissions (150–200 Pg C), and has a net cooling effect (from evapotranspiration) that helps to stabilize the Earth’s climate 1 , 2 , 3 . The forest contributes up to 50% of rainfall in the region and is crucial for moisture supply across South America 4 , allowing other biomes and economic activities to thrive in regions that would otherwise be more arid, such as the Pantanal wetlands and the La Plata river basin 1 . Large parts of the Amazon forest, however, are projected to experience mass mortality events due to climatic and land use-related disturbances in the coming decades 5 , 6 , potentially accelerating climate change through carbon emissions and feedbacks with the climate system 2 , 3 . These impacts would also involve irreversible loss of biodiversity, socioeconomic and cultural values 1 , 7 , 8 , 9 . The Amazon is home to more than 40 million people, including 2.2 million Indigenous peoples of more than 300 ethnicities, as well as afrodescendent and local traditional communities 1 . Indigenous peoples and local communities (IPLCs) would be harmed by forest loss in terms of their livelihoods, lifeways and knowledge systems that inspire societies globally 1 , 7 , 9 .

Understanding the risk of such catastrophic behaviour requires addressing complex factors that shape ecosystem resilience 10 . A major question is whether a large-scale collapse of the Amazon forest system could actually happen within the twenty-first century, and if this would be associated with a particular tipping point. Here we synthesize evidence from paleorecords, observational data and modelling studies of critical drivers of stress on the system. We assess potential thresholds of those drivers and the main feedbacks that could push the Amazon forest towards a tipping point. From examples of disturbed forests across the Amazon, we analyse the most plausible ecosystem trajectories that may lead to alternative stable states 10 . Moreover, inspired by the framework of ‘planetary boundaries’ 11 , we identify climatic and land use boundaries that reveal a safe operating space for the Amazon forest system in the Anthropocene epoch 12 .

Theory and concepts

Over time, environmental conditions fluctuate and may cause stress on ecosystems (for example, lack of water for plants). When stressing conditions intensify, some ecosystems may change their equilibrium state gradually, whereas others may shift abruptly between alternative stable states 10 . A ‘tipping point’ is the critical threshold value of an environmental stressing condition at which a small disturbance may cause an abrupt shift in the ecosystem state 2 , 3 , 13 , 14 , accelerated by positive feedbacks 15 (see Extended Data Table 1 ). This type of behaviour in which the system gets into a phase of self-reinforcing (runaway) change is often referred to as ‘critical transition’ 16 . As ecosystems approach a tipping point, they often lose resilience while still remaining close to equilibrium 17 . Thus, monitoring changes in ecosystem resilience and in key environmental conditions may enable societies to manage and avoid critical transitions. We adopt the concept of ‘ecological resilience’ 18 (hereafter ‘resilience’), which refers to the ability of an ecosystem to persist with similar structure, functioning and interactions, despite disturbances that push it to an alternative stable state. The possibility that alternative stable states (or bistability) may exist in a system has important implications, because the crossing of tipping points may be irreversible for the time scales that matter to societies 10 . Tropical terrestrial ecosystems are a well-known case in which critical transitions between alternative stable states may occur (Extended Data Fig. 1 ).

Past dynamics

The Amazon system has been mostly covered by forest throughout the Cenozoic era 19 (for 65 million years). Seven million years ago, the Amazon river began to drain the massive wetlands that covered most of the western Amazon, allowing forests to expand over grasslands in that region. More recently, during the drier and cooler conditions of the Last Glacial Maximum 20 (LGM) (around 21,000 years ago) and of the mid-Holocene epoch 21 (around 6,000 years ago), forests persisted even when humans were already present in the landscape 22 . Nonetheless, savannas expanded in peripheral parts of the southern Amazon basin during the LGM and mid-Holocene 23 , as well as in the northeastern Amazon during the early Holocene (around 11,000 years ago), probably influenced by drier climatic conditions and fires ignited by humans 24 , 25 . Throughout the core of the Amazon forest biome, patches of white-sand savanna also expanded in the past 20,000–7,000 years, driven by sediment deposition along ancient rivers 26 , and more recently (around 800 years ago) owing to Indigenous fires 27 . However, during the past 3,000 years, forests have been mostly expanding over savanna in the southern Amazon driven by increasingly wet conditions 28 .

Although palaeorecords suggest that a large-scale Amazon forest collapse did not occur within the past 65 million years 19 , they indicate that savannas expanded locally, particularly in the more seasonal peripheral regions when fires ignited by humans were frequent 23 , 24 . Patches of white-sand savanna also expanded within the Amazon forest owing to geomorphological dynamics and fires 26 , 27 . Past drought periods were usually associated with much lower atmospheric CO 2 concentrations, which may have reduced water-use efficiency of trees 29 (that is, trees assimilated less carbon during transpiration). However, these periods also coincided with cooler temperatures 20 , 21 , which probably reduced water demand by trees 30 . Past drier climatic conditions were therefore very different from the current climatic conditions, in which observed warming trends may exacerbate drought impacts on the forest by exposing trees to unprecedented levels of water stress 31 , 32 .

Global change impacts on forest resilience

Satellite observations from across the Amazon suggest that forest resilience has been decreasing since the early 2000s 33 , possibly as a result of global changes. In this section, we synthesize three global change impacts that vary spatially and temporally across the Amazon system, affecting forest resilience and the risk of critical transitions.

Regional climatic conditions

Within the twenty-first century, global warming may cause long-term changes in Amazonian climatic conditions 2 . Human greenhouse gas emissions continue to intensify global warming, but the warming rate also depends on feedbacks in the climate system that remain uncertain 2 , 3 . Recent climate models of the 6th phase of the Coupled Model Intercomparison Project (CMIP6) agree that in the coming decades, rainfall conditions will become more seasonal in the eastern and southern Amazonian regions, and temperatures will become higher across the entire Amazon 1 , 2 . By 2050, models project that a significant increase in the number of consecutive dry days by 10−30 days and in annual maximum temperatures by 2–4 °C, depending on the greenhouse gas emission scenario 2 . These climatic conditions could expose the forest to unprecedented levels of vapour pressure deficit 31 and consequently water stress 30 .

Satellite observations of climatic variability 31 confirm model projections 2 , showing that since the early 1980s, the Amazonian region has been warming significantly at an average rate of 0.27 °C per decade during the dry season, with the highest rates of up to 0.6 °C per decade in the centre and southeast of the biome (Fig. 1a ). Only a few small areas in the west of the biome are significantly cooling by around 0.1 °C per decade (Fig. 1a ). Dry season mean temperature is now more than 2 °C higher than it was 40 years ago in large parts of the central and southeastern Amazon. If trends continue, these areas could potentially warm by over 4 °C by 2050. Maximum temperatures during the dry season follow a similar trend, rising across most of the biome (Extended Data Fig. 2 ), exposing the forest 34 and local peoples 35 to potentially unbearable heat. Rising temperatures will increase thermal stress, potentially reducing forest productivity and carbon storage capacity 36 and causing widespread leaf damage 34 .

figure 1

a , Changes in the dry season (July–October) mean temperature reveal widespread warming, estimated using simple regressions between time and temperature observed between 1981 and 2020 (with P  < 0.1). b , Potential ecosystem stability classes estimated for year 2050, adapted from current stability classes (Extended Data Fig. 1b ) by considering only areas with significant regression slopes between time and annual rainfall observed from 1981 through 2020 (with P  < 0.1) (see Extended Data Fig. 3 for areas with significant changes). c , Repeated extreme drought events between 2001–2018 (adapted from ref. 39 ). d , Road network from where illegal deforestation and degradation may spread. e , Protected areas and Indigenous territories reduce deforestation and fire disturbances. f , Ecosystem transition potential (the possibility of forest shifting into an alternative structural or compositional state) across the Amazon biome by year 2050 inferred from compounding disturbances ( a – d ) and high-governance areas ( e ). We excluded accumulated deforestation until 2020 and savannas. Transition potential rises with compounding disturbances and varies as follows: less than 0 (in blue) as low; between 1 and 2 as moderate (in yellow); more than 2 as high (orange–red). Transition potential represents the sum of: (1) slopes of dry season mean temperature (as in a , multiplied by 10); (2) ecosystem stability classes estimated for year 2050 (as in b ), with 0 for stable forest, 1 for bistable and 2 for stable savanna; (3) accumulated impacts from extreme drought events, with 0.2 for each event; (4) road proximity as proxy for degrading activities, with 1 for pixels within 10 km from a road; (5) areas with higher governance within protected areas and Indigenous territories, with −1 for pixels inside these areas. For more details, see  Methods .

Since the early 1980s, rainfall conditions have also changed 31 . Peripheral and central parts of the Amazon forest are drying significantly, such as in the southern Bolivian Amazon, where annual rainfall reduced by up to 20 mm yr −1 (Extended Data Fig. 3a ). By contrast, parts of the western and eastern Amazon forest are becoming wetter, with annual rainfall increasing by up to 20 mm yr −1 . If these trends continue, ecosystem stability (as in Extended Data Fig. 1 ) will probably change in parts of the Amazon by 2050, reshaping forest resilience to disturbances (Fig. 1b and Extended Data Fig. 3b ). For example, 6% of the biome may change from stable forest to a bistable regime in parts of the southern and central Amazon. Another 3% of the biome may pass the critical threshold in annual rainfall into stable savanna in the southern Bolivian Amazon. Bistable areas covering 8% of the biome may turn into stable forest in the western Amazon (Peru and Bolivia), thus becoming more resilient to disturbances. For comparison with satellite observations, we used projections of ecosystem stability by 2050 based on CMIP6 model ensembles for a low (SSP2–4.5) and a high (SSP5–8.5) greenhouse gas emission scenario (Extended Data Fig. 4 and Supplementary Table 1 ). An ensemble with the 5 coupled models that include a dynamic vegetation module indicates that 18–27% of the biome may transition from stable forest to bistable and that 2–6% may transition to stable savanna (depending on the scenario), mostly in the northeastern Amazon. However, an ensemble with all 33 models suggests that 35–41% of the biome could become bistable, including large areas of the southern Amazon. The difference between both ensembles is possibly related to the forest–rainfall feedback included in the five coupled models, which increases total annual rainfall and therefore the stable forest area along the southern Amazon, but only when deforestation is not included in the simulations 4 , 37 . Nonetheless, both model ensembles agree that bistable regions will expand deeper into the Amazon, increasing the risk of critical transitions due to disturbances (as implied by the existence of alternative stable states; Extended Data Fig. 1 ).

Disturbance regimes

Within the remaining Amazon forest area, 17% has been degraded by human disturbances 38 , such as logging, edge effects and understory fires, but if we consider also the impacts from repeated extreme drought events in the past decades, 38% of the Amazon could be degraded 39 . Increasing rainfall variability is causing extreme drought events to become more widespread and frequent across the Amazon (Fig. 1c ), together with extreme wet events and convective storms that result in more windthrow disturbances 40 . Drought regimes are intensifying across the region 41 , possibly due to deforestation 42 that continues to expand within the system (Extended Data Fig. 5 ). As a result, new fire regimes are burning larger forest areas 43 , emitting more carbon to the atmosphere 44 and forcing IPLCs to readapt 45 . Road networks (Fig. 1d ) facilitate illegal activities, promoting more deforestation, logging and fire spread throughout the core of the Amazon forest 38 , 39 . The impacts of these pervasive disturbances on biodiversity and on IPLCs will probably affect ecosystem adaptability (Box 1 ), and consequently forest resilience to global changes.

Currently, 86% of the Amazon biome may be in a stable forest state (Extended Data Fig. 1b ), but some of these stable forests are showing signs of fragility 33 . For instance, field evidence from long-term monitoring sites across the Amazon shows that tree mortality rates are increasing in most sites, reducing carbon storage 46 , while favouring the replacement by drought-affiliated species 47 . Aircraft measurements of vertical carbon flux between the forest and atmosphere reveal how southeastern forests are already emitting more carbon than they absorb, probably because of deforestation and fire 48 .

As bistable forests expand deeper into the system (Fig. 1b and Extended Data Fig. 4 ), the distribution of compounding disturbances may indicate where ecosystem transitions are more likely to occur in the coming decades (Fig. 1f ). For this, we combined spatial information on warming and drying trends, repeated extreme drought events, together with road networks, as proxy for future deforestation and degradation 38 , 39 . We also included protected areas and Indigenous territories as areas with high forest governance, where deforestation and fire regimes are among the lowest within the Amazon 49 (Fig. 1e ). This simple additive approach does not consider synergies between compounding disturbances that could trigger unexpected ecosystem transitions. However, by exploring only these factors affecting forest resilience and simplifying the enormous Amazonian complexity, we aimed to produce a simple and comprehensive map that can be useful for guiding future governance. We found that 10% of the Amazon forest biome has a relatively high transition potential (more than 2 disturbance types; Fig. 1f ), including bistable forests that could transition into a low tree cover state near savannas of Guyana, Venezuela, Colombia and Peru, as well as stable forests that could transition into alternative compositional states within the central Amazon, such as along the BR319 and Trans-Amazonian highways. Smaller areas with high transition potential were found scattered within deforestation frontiers, where most forests have been carved by roads 50 , 51 . Moreover, 47% of the biome has a moderate transition potential (more than 1 disturbance type; Fig. 1f ), including relatively remote parts of the central Amazon where warming trends and repeated extreme drought events overlap (Fig. 1a,c ). By contrast, large remote areas covering 53% of the biome have low transition potential, mostly reflecting the distribution of protected areas and Indigenous territories (Fig. 1e ). If these estimates, however, considered projections from CMIP6 models and their relatively broader areas of bistability (Extended Data Fig. 4 ), the proportion of the Amazon forest that could transition into a low tree cover state would be much larger.

Box 1 Ecosystem adaptability

We define ‘ecosystem adaptability’ as the capacity of an ecosystem to reorganize and persist in the face of environmental changes. In the past, many internal mechanisms have probably contributed to ecosystem adaptability, allowing Amazonian forests to persist during times of climate change. In this section we synthesize two of these internal mechanisms, which are now being undermined by global change.

Biodiversity

Amazonian forests are home to more than 15,000 tree species, of which 1% are dominant and the other 99% are mostly rare 107 . A single forest hectare in the central and northwestern Amazon can contain more than 300 tree species (Extended Data Fig. 7a ). Such tremendous tree species diversity can increase forest resilience by different mechanisms. Tree species complementarity increases carbon storage, accelerating forest recovery after disturbances 108 . Tree functional diversity increases forest adaptability to climate chance by offering various possibilities of functioning 99 . Rare species provide ‘ecological redundancy’, increasing opportunities for replacement of lost functions when dominant species disappear 109 . Diverse forests are also more likely to resist severe disturbances owing to ‘response diversity’ 110 —that is, some species may die, while others persist. For instance, in the rainy western Amazon, drought-resistant species are rare but present within tree communities 111 , implying that they could replace the dominant drought-sensitive species in a drier future. Diversity of other organisms, such as frugivores and pollinators, also increases forest resilience by stabilizing ecological networks 15 , 112 . Considering that half of Amazonian tree species are estimated to become threatened (IUCN Red list) by 2050 owing to climate change, deforestation and degradation 8 , biodiversity losses could contribute to further reducing forest resilience.

Indigenous peoples and local communities

Globally, Indigenous peoples and local communities (IPLCs) have a key role in maintaining ecosystems resilient to global change 113 . Humans have been present in the Amazon for at least 12,000 years 114 and extensively managing landscapes for 6,000 years 22 . Through diverse ecosystem management practices, humans built thousands of earthworks and ‘Amazon Dark Earth’ sites, and domesticated plants and landscapes across the Amazon forest 115 , 116 . By creating new cultural niches, humans partly modified the Amazonian flora 117 , 118 , increasing their food security even during times of past climate change 119 , 120 without the need for large-scale deforestation 117 . Today, IPLCs have diverse ecological knowledge about Amazonian plants, animals and landscapes, which allows them to quickly identify and respond to environmental changes with mitigation and adaptation practices 68 , 69 . IPLCs defend their territories against illegal deforestation and land use disturbances 49 , 113 , and they also promote forest restoration by expanding diverse agroforestry systems 121 , 122 . Amazonian regions with the highest linguistic diversity (a proxy for ecological knowledge diversity 123 ) are found in peripheral parts of the system, particularly in the north-west (Extended Data Fig. 7b ). However, consistent loss of Amazonian languages is causing an irreversible disruption of ecological knowledge systems, mostly driven by road construction 7 . Continued loss of ecological knowledge will undermine the capacity of IPLCs to manage and protect Amazonian forests, further reducing their resilience to global changes 9 .

CO 2 fertilization

Rising atmospheric CO 2 concentrations are expected to increase the photosynthetic rates of trees, accelerating forest growth and biomass accumulation on a global scale 52 . In addition, CO 2 may reduce water stress by increasing tree water-use efficiency 29 . As result, a ‘CO 2 fertilization effect’ could increase forest resilience to climatic variability 53 , 54 . However, observations from across the Amazon 46 suggest that CO 2 -driven accelerations of tree growth may have contributed to increasing tree mortality rates (trees grow faster but also die earlier), which could eventually neutralize the forest carbon sink in the coming decades 55 . Moreover, increases in tree water-use efficiency may reduce forest transpiration and consequently atmospheric moisture flow across the Amazon 53 , 56 , potentially reducing forest resilience in the southwest of the biome 4 , 37 . Experimental evidence suggests that CO 2 fertilization also depends on soil nutrient availability, particularly nitrogen and phosphorus 57 , 58 . Thus, it is possible that in the fertile soils of the western Amazon and Várzea floodplains, forests may gain resilience from increasing atmospheric CO 2 (depending on how it affects tree mortality rates), whereas on the weathered (nutrient-poor) soils across most of the Amazon basin 59 , forests might not respond to atmospheric CO 2 increase, particularly on eroded soils within deforestation frontiers 60 . In sum, owing to multiple interacting factors, potential responses of Amazonian forests to CO 2 fertilization are still poorly understood. Forest responses depend on scale, with resilience possibly increasing at the local scale on relatively more fertile soils, but decreasing at the regional scale due to reduced atmospheric moisture flow.

Local versus systemic transition

Environmental heterogeneity.

Environmental heterogeneity can reduce the risk of systemic transition (large-scale forest collapse) because when stressing conditions intensify (for example, rainfall declines), heterogeneous forests may transition gradually (first the less resilient forest patches, followed by the more resilient ones), compared to homogeneous forests that may transition more abruptly 17 (all forests transition in synchrony). Amazonian forests are heterogeneous in their resilience to disturbances, which may have contributed to buffering large-scale transitions in the past 37 , 61 , 62 . At the regional scale, a fundamental heterogeneity factor is rainfall and how it translates into water stress. Northwestern forests rarely experience water stress, which makes them relatively more resilient than southeastern forests that may experience water stress in the dry season, and therefore are more likely to shift into a low tree cover state. As a result of low exposure to water deficit, most northwestern forests have trees with low drought resistance and could suffer massive mortality if suddenly exposed to severe water stress 32 . However, this scenario seems unlikely to occur in the near future (Fig. 1 ). By contrast, most seasonal forest trees have various strategies to cope with water deficit owing to evolutionary and adaptive responses to historical drought events 32 , 63 . These strategies may allow seasonal forests to resist current levels of rainfall fluctuations 32 , but seasonal forests are also closer to the critical rainfall thresholds (Extended Data Fig. 1 ) and may experience unprecedented water stress in the coming decades (Fig. 1 ).

Other key heterogeneity factors (Extended Data Fig. 6 ) include topography, which determines plant access to groundwater 64 , and seasonal flooding, which increases forest vulnerability to wildfires 65 . Future changes in rainfall regimes will probably affect hydrological regimes 66 , exposing plateau (hilltop) forests to unprecedented water stress, and floodplain forests to extended floods, droughts and wildfires. Soil fertility is another heterogeneity factor that may affect forest resilience 59 , and which may be undermined by disturbances that cause topsoil erosion 60 . Moreover, as human disturbances intensify throughout the Amazon (Fig. 1 ), the spread of invasive grasses and fires can make the system increasingly homogeneous. Effects of heterogeneity on Amazon forest resilience have been poorly investigated so far (but see refs. 37 , 61 , 62 ) and many questions remain open, such as how much heterogeneity exists in the system and whether it can mitigate a systemic transition.

Sources of connectivity

Connectivity across Amazonian landscapes and regions can contribute to synchronize forest dynamics, causing different forests to behave more similarly 17 . Depending on the processes involved, connectivity can either increase or decrease the risk of systemic transition 17 . For instance, connectivity may facilitate forest recovery after disturbances through seed dispersal, but also it may spread disturbances, such as fire. In the Amazon, an important source of connectivity enhancing forest resilience is atmospheric moisture flow westward (Fig. 2 ), partly maintained by forest evapotranspiration 4 , 37 , 67 . Another example of connectivity that may increase social-ecological resilience is knowledge exchange among IPLCs about how to adapt to global change 68 , 69 (see Box 1 ). However, complex systems such as the Amazon can be particularly vulnerable to sources of connectivity that spread disturbances and increase the risk of systemic transition 70 . For instance, roads carving through the forest are well-known sources of illegal activities, such as logging and burning, which increase forest flammability 38 , 39 .

figure 2

Brazil holds 60% of the Amazon forest biome and has a major responsibility towards its neighbouring countries in the west. Brazil is the largest supplier of rainfall to western Amazonian countries. Up to one-third of the total annual rainfall in Amazonian territories of Bolivia, Peru, Colombia and Ecuador depends on water originating from Brazil’s portion of the Amazon forest. This international connectivity illustrates how policies related to deforestation, especially in the Brazilian Amazon, will affect the climate in other countries. Arrow widths are proportional to the percentage of the annual rainfall received by each country within their Amazonian areas. We only show flows with percentages higher than 10% (see  Methods for details).

Five critical drivers of water stress

Global warming.

Most CMIP6 models agree that a large-scale dieback of the Amazon is unlikely in response to global warming above pre-industrial levels 2 , but this ecosystem response is based on certain assumptions, such as a large CO 2 -fertilization effect 53 . Forests across the Amazon are already responding with increasing tree mortality rates that are not simulated by these models 46 , possibly because of compounding disturbance regimes (Fig. 1 ). Nonetheless, a few global climate models 3 , 14 , 71 , 72 , 73 , 74 indicate a broad range for a potential critical threshold in global warming between 2 and 6 °C (Fig. 3a ). These contrasting results can be explained by general differences between numerical models and their representation of the complex Amazonian system. While some models with dynamic vegetation indicate local-scale tipping events in peripheral parts of the Amazon 5 , 6 , other models suggest an increase in biomass and forest cover (for example, in refs. 53 , 54 ). For instance, a study found that when considering only climatic variability, a large-scale Amazon forest dieback is unlikely, even under a high greenhouse gas emission scenario 75 . However, most updated CMIP6 models agree that droughts in the Amazon region will increase in length and intensity, and that exceptionally hot droughts will become more common 2 , creating conditions that will probably boost other types of disturbances, such as large and destructive forest fires 76 , 77 . To avoid broad-scale ecosystem transitions due to synergies between climatic and land use disturbances (Fig. 3b ), we suggest a safe boundary for the Amazon forest at 1.5 °C for global warming above pre-industrial levels, in concert with the Paris Agreement goals.

figure 3

a , Five critical drivers of water stress on Amazonian forests affect (directly or indirectly) the underlying tipping point of the system. For each driver, we indicate potential critical thresholds and safe boundaries that define a safe operating space for keeping the Amazon forest resilient 11 , 12 . We followed the precautionary principle and considered the most conservative thresholds within the ranges, when confidence was low. b , Conceptual model showing how the five drivers may interact (arrows indicate positive effects) and how these interactions may strengthen a positive feedback between water stress and forest loss. These emerging positive feedback loops could accelerate a systemic transition of the Amazon forest 15 . At global scales, driver 1 (global warming) intensifies with greenhouse gas emissions, including emissions from deforestation. At local scales, driver 5 (accumulated deforestation) intensifies with land use changes. Drivers 2 to 4 (regional rainfall conditions) intensify in response to drivers 1 and 5. The intensification of these drivers may cause widespread tree mortality for instance because of extreme droughts and fires 76 . Water stress affects vegetation resilience globally 79 , 104 , but other stressors, such as heat stress 34 , 36 , may also have a role. In the coming decades, these five drivers could change at different rates, with some approaching a critical threshold faster than others. Therefore, monitoring them separately can provide vital information to guide mitigation and adaptation strategies.

Annual rainfall

Satellite observations of tree cover distributions across tropical South America suggest a critical threshold between 1,000 and 1,250 mm of annual rainfall 78 , 79 . On the basis of our reanalysis using tree cover data from the Amazon basin (Extended Data Fig. 1a ), we confirm a potential threshold at 1,000 mm of annual rainfall (Fig. 3a ), below which forests become rare and unstable. Between 1,000 and 1,800 mm of annual rainfall, high and low tree cover ecosystems exist in the Amazon as two alternative stable states (see Extended Data Table 2 for uncertainty ranges). Within the bistability range in annual rainfall conditions, forests are relatively more likely to collapse when severely disturbed, when compared to forests in areas with annual rainfall above 1,800 mm (Extended Data Fig. 1a ). For floodplain ecosystems covering 14% of the forest biome, a different critical threshold has been estimated at 1,500 mm of annual rainfall 65 , implying that floodplain forests may be the first to collapse in a drier future. To avoid local-scale ecosystem transitions due to compounding disturbances, we suggest a safe boundary in annual rainfall conditions at 1,800 mm.

Rainfall seasonality intensity

Satellite observations of tree cover distributions across tropical South America suggest a critical threshold in rainfall seasonality intensity at −400 mm of the maximum cumulative water deficit 37 , 80 (MCWD). Our reanalysis of the Amazon basin (Extended Data Fig. 1c ) confirms the critical threshold at approximately −450 mm in the MCWD (Fig. 3a ), and suggests a bistability range between approximately −350 and −450 mm (see Extended Data Table 2 for uncertainty ranges), in which forests are more likely to collapse when severely disturbed than forests in areas with MCWD below −350 mm. To avoid local-scale ecosystem transitions due to compounding disturbances, we suggest a safe boundary of MCWD at −350 mm.

Dry season length

Satellite observations of tree cover distributions across tropical South America suggest a critical threshold at 7 months of dry season length 79 (DSL). Our reanalysis of the Amazon basin (Extended Data Fig. 1d ) suggests a critical threshold at eight months of DSL (Fig. 3a ), with a bistability range between approximately five and eight months (see Extended Data Table 2 for uncertainty ranges), in which forests are more likely to collapse when severely disturbed than forests in areas with DSL below five months. To avoid local-scale ecosystem transitions due to compounding disturbances, we suggest a safe boundary of DSL at five months.

Accumulated deforestation

A potential vegetation model 81 found a critical threshold at 20% of accumulated deforestation (Fig. 3a ) by simulating Amazon forest responses to different scenarios of accumulated deforestation (with associated fire events) and of greenhouse gas emissions, and by considering a CO 2 fertilization effect of 25% of the maximum photosynthetic assimilation rate. Beyond 20% deforestation, forest mortality accelerated, causing large reductions in regional rainfall and consequently an ecosystem transition of 50−60% of the Amazon, depending on the emissions scenario. Another study using a climate-vegetation model found that with accumulated deforestation of 30−50%, rainfall in non-deforested areas downwind would decline 67 by 40% (ref.  67 ), potentially causing more forest loss 4 , 37 . Other more recent models incorporating fire disturbances support a potential broad-scale transition of the Amazon forest, simulating a biomass loss of 30–40% under a high-emission scenario 5 , 82 (SSP5–8.5 at 4 °C). The Amazon biome has already lost 13% of its original forest area due to deforestation 83 (or 15% of the biome if we consider also young secondary forests 83 that provide limited contribution to moisture flow 84 ). Among the remaining old-growth forests, at least 38% have been degraded by land use disturbances and repeated extreme droughts 39 , with impacts on moisture recycling that are still uncertain. Therefore, to avoid broad-scale ecosystem transitions due to runaway forest loss (Fig. 3b ), we suggest a safe boundary of accumulated deforestation of 10% of the original forest biome cover, which requires ending large-scale deforestation and restoring at least 5% of the biome.

Three alternative ecosystem trajectories

Degraded forest.

In stable forest regions of the Amazon with annual rainfall above 1,800 mm (Extended Data Fig. 1b ), forest cover usually recovers within a few years or decades after disturbances, yet forest composition and functioning may remain degraded for decades or centuries 84 , 85 , 86 , 87 . Estimates from across the Amazon indicate that approximately 30% of areas previously deforested are in a secondary forest state 83 (covering 4% of the biome). An additional 38% of the forest biome has been damaged by extreme droughts, fires, logging and edge effects 38 , 39 . These forests may naturally regrow through forest succession, yet because of feedbacks 15 , succession can become arrested, keeping forests persistently degraded (Fig. 4 ). Different types of degraded forests have been identified in the Amazon, each one associated with a particular group of dominant opportunistic plants. For instance, Vismia forests are common in old abandoned pastures managed with fire 85 , and are relatively stable, because Vismia trees favour recruitment of Vismia seedlings in detriment of other tree species 88 , 89 . Liana forests can also be relatively stable, because lianas self-perpetuate by causing physical damage to trees, allowing lianas to remain at high density 90 , 91 . Liana forests are expected to expand with increasing aridity, disturbance regimes and CO 2 fertilization 90 . Guadua bamboo forests are common in the southwestern Amazon 92 , 93 . Similar to lianas, bamboos self-perpetuate by causing physical damage to trees and have been expanding over burnt forests in the region 92 . Degraded forests are usually dominated by native opportunistic species, and their increasing expansion over disturbed forests could affect Amazonian functioning and resilience in the future.

figure 4

From examples of disturbed forests across the Amazon, we identify the three most plausible ecosystem trajectories related to the types of disturbances, feedbacks and local environmental conditions. These alternative trajectories may be irreversible or transient depending on the strength of the novel interactions 15 . Particular combinations of interactions (arrows show positive effects described in the literature) may form feedback loops 15 that propel the ecosystem through these trajectories. In the ‘degraded forest’ trajectory, feedbacks often involve competition between trees and other opportunistic plants 85 , 90 , 92 , as well as interactions between deforestation, fire and seed limitation 84 , 87 , 105 . At the landscape scale, secondary forests are more likely to be cleared than mature forests, thus keeping forests persistently young and landscapes fragmented 83 . In the ‘degraded open-canopy ecosystem’ trajectory, feedbacks involve interactions among low tree cover and fire 97 , soil erosion 60 , seed limitation 105 , invasive grasses and opportunistic plants 96 . At the regional scale, a self-reinforcing feedback between forest loss and reduced atmospheric moisture flow may increase the resilience of these open-canopy degraded ecosystems 42 . In the ‘white-sand savanna’ trajectory, the main feedbacks result from interactions among low tree cover and fire, soil erosion, and seed limitation 106 . Bottom left, floodplain forest transition to white-sand savanna after repeated fires (photo credit: Bernardo Flores); bottom centre, forest transition to degraded open-canopy ecosystem after repeated fires (photo credit: Paulo Brando); bottom right, forest transition to Vismia degraded forest after slash-and-burn agriculture (photo credit: Catarina Jakovac).

White-sand savanna

White-sand savannas are ancient ecosystems that occur in patches within the Amazon forest biome, particularly in seasonally waterlogged or flooded areas 94 . Their origin has been attributed to geomorphological dynamics and past Indigenous fires 26 , 27 , 94 . In a remote landscape far from large agricultural frontiers, within a stable forest region of the Amazon (Extended Data Fig. 1b ), satellite and field evidence revealed that white-sand savannas are expanding where floodplain forests were repeatedly disturbed by fires 95 . After fire, the topsoil of burnt forests changes from clayey to sandy, favouring the establishment of savanna trees and native herbaceous plants 95 . Shifts from forest to white-sand savanna (Fig. 4 ) are probably stable (that is, the ecosystem is unlikely to recover back to forest within centuries), based on the relatively long persistence of these savannas in the landscape 94 . Although these ecosystem transitions have been confirmed only in the Negro river basin (central Amazon), floodplain forests in other parts of the Amazon were shown to be particularly vulnerable to collapse 45 , 64 , 65 .

Degraded open-canopy ecosystem

In bistable regions of the Amazon forest with annual rainfall below 1,800 mm (Extended Data Fig. 1b ), shifts to degraded open-canopy ecosystems are relatively common after repeated disturbances by fire 45 , 96 . The ecosystem often becomes dominated by fire-tolerant tree and palm species, together with alien invasive grasses and opportunistic herbaceous plants 96 , 97 , such as vines and ferns. Estimates from the southern Amazon indicate that 5−6% of the landscape has already shifted into degraded open-canopy ecosystems due to deforestation and fires 45 , 96 . It is still unclear, however, whether degraded open-canopy ecosystems are stable or transient (Fig. 4 ). Palaeorecords from the northern Amazon 98 show that burnt forests may spend centuries in a degraded open-canopy state before they eventually shift into a savanna. Today, invasion by alien flammable grasses is a novel stabilizing mechanism 96 , 97 , but the long-term persistence of these grasses in the ecosystem is also uncertain.

Prospects for modelling Amazon forest dynamics

Several aspects of the Amazon forest system may help improve earth system models (ESMs) to more accurately simulate ecosystem dynamics and feedbacks with the climate system. Simulating individual trees can improve the representation of growth and mortality dynamics, which ultimately affect forest dynamics (for example, refs. 61 , 62 , 99 ). Significant effects on simulation results may emerge from increasing plant functional diversity, representation of key physiological trade-offs and other features that determine water stress on plants, and also allowing for community adjustment to environmental heterogeneity and global change 32 , 55 , 62 , 99 . For now, most ESMs do not simulate a dynamic vegetation cover (Supplementary Table 1 ) and biomes are represented based on few plant functional types, basically simulating monocultures on the biome level. In reality, tree community adaptation to a heterogenous and dynamic environment feeds into the whole-system dynamics, and not covering such aspects makes a true Amazon tipping assessment more challenging.

Our findings also indicate that Amazon forest resilience is affected by compounding disturbances (Fig. 1 ). ESMs need to include different disturbance scenarios and potential synergies for creating more realistic patterns of disturbance regimes. For instance, logging and edge effects can make a forest patch more flammable 39 , but these disturbances are often not captured by ESMs. Improvements in the ability of ESMs to predict future climatic conditions are also required. One way is to identify emergent constraints 100 , lowering ESMs variations in their projections of the Amazonian climate. Also, fully coupled ESMs simulations are needed to allow estimates of land-atmosphere feedbacks, which may adjust climatic and ecosystem responses. Another way to improve our understanding of the critical thresholds for Amazonian resilience and how these link to climatic conditions and to greenhouse gas concentrations is through factorial simulations with ESMs. In sum, although our study may not deliver a set of reliable and comprehensive equations to parameterize processes impacting Amazon forest dynamics, required for implementation in ESMs, we highlight many of the missing modelled processes.

Implications for governance

Forest resilience is changing across the Amazon as disturbance regimes intensify (Fig. 1 ). Although most recent models agree that a large-scale collapse of the Amazon forest is unlikely within the twenty-first century 2 , our findings suggest that interactions and synergies among different disturbances (for example, frequent extreme hot droughts and forest fires) could trigger unexpected ecosystem transitions even in remote and central parts of the system 101 . In 2012, Davidson et al. 102 demonstrated how the Amazon basin was experiencing a transition to a ‘disturbance-dominated regime’ related to climatic and land use changes, even though at the time, annual deforestation rates were declining owing to new forms of governance 103 . Recent policy and approaches to Amazon development, however, accelerated deforestation that reached 13,000 km 2 in the Brazilian Amazon in 2021 ( http://terrabrasilis.dpi.inpe.br ). The southeastern region has already turned into a source of greenhouse gases to the atmosphere 48 . The consequences of losing the Amazon forest, or even parts of it, imply that we must follow a precautionary approach—that is, we must take actions that contribute to maintain the Amazon forest within safe boundaries 12 . Keeping the Amazon forest resilient depends firstly on humanity’s ability to stop greenhouse gas emissions, mitigating the impacts of global warming on regional climatic conditions 2 . At the local scale, two practical and effective actions need to be addressed to reinforce forest–rainfall feedbacks that are crucial for the resilience of the Amazon forest 4 , 37 : (1) ending deforestation and forest degradation; and (2) promoting forest restoration in degraded areas. Expanding protected areas and Indigenous territories can largely contribute to these actions. Our findings suggest a list of thresholds, disturbances and feedbacks that, if well managed, can help maintain the Amazon forest within a safe operating space for future generations.

Our study site was the area of the Amazon basin, considering large areas of tropical savanna biome along the northern portion of the Brazilian Cerrado, the Gran Savana in Venezuela and the Llanos de Moxos in Bolivia, as well as the Orinoco basin to the north, and eastern parts of the Andes to the west. The area includes also high Andean landscapes with puna and paramo ecosystems. We chose this contour to allow better communication with the MapBiomas Amazonian Project (2022; https://amazonia.mapbiomas.org ). For specific interpretation of our results, we considered the contour of the current extension of the Amazon forest biome, which excludes surrounding tropical savanna biomes.

We used the Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Continuous Fields (VCF) data (MOD44B version 6; https://lpdaac.usgs.gov/products/mod44bv006/ ) for the year 2001 at 250-m resolution 124 to reanalyse tree cover distributions within the Amazon basin, refining estimates of bistability ranges and critical thresholds in rainfall conditions from previous studies. Although MODIS VCF can contain errors within lower tree cover ranges and should not be used to test for bistability between grasslands and savannas 125 , the dataset is relatively robust for assessing bistability within the tree cover range of forests and savannas 126 , as also shown by low uncertainty (standard deviation of tree cover estimates) across the Amazon (Extended Data Fig. 8 ).

We used the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS; https://www.chc.ucsb.edu/data/chirps ) 127 to estimate mean annual rainfall and rainfall seasonality for the present across the Amazon basin, based on monthly means from 1981 to 2020, at a 0.05° spatial resolution.

We used the Climatic Research Unit (CRU; https://www.uea.ac.uk/groups-and-centres/climatic-research-unit ) 128 to estimate mean annual temperature for the present across the Amazon basin, based on monthly means from 1981 to 2020, at a 0.5° spatial resolution.

To mask deforested areas until 2020, we used information from the MapBiomas Amazonia Project (2022), collection 3, of Amazonian Annual Land Cover and Land Use Map Series ( https://amazonia.mapbiomas.org ).

To assess forest fire distribution across the Amazon forest biome and in relation to road networks, we used burnt area fire data obtained from the AQUA sensor onboard the MODIS satellite. Only active fires with a confidence level of 80% or higher were selected. The data are derived from MODIS MCD14ML (collection 6) 129 , available in Fire Information for Resource Management System (FIRMS). The data were adjusted to a spatial resolution of 1 km.

Potential analysis

Using potential analysis 130 , an empirical stability landscape was constructed based on spatial distributions of tree cover (excluding areas deforested until 2020; https://amazonia.mapbiomas.org ) against mean annual precipitation, MCWD and DSL. Here we followed the methodology of Hirota et al. 104 . For bins of each of the variables, the probability density of tree cover was determined using the MATLAB function ksdensity. Local maxima of the resulting probability density function are considered to be stable equilibria, in which local maxima below a threshold value of 0.005 were ignored. Based on sensitivity tests (see below), we chose the intermediate values of the sensitivity parameter for each analysis, which resulted in the critical thresholds most similar to the ones previously published in the literature.

Sensitivity tests of the potential analysis

We smoothed the densities of tree cover with the MATLAB kernel smoothing function ksdensity. Following Hirota et al. 104 , we used a flexible bandwidth ( h ) according to Silverman’s rule of thumb 131 : h  = 1.06 σn 1/5 , where σ is the standard deviation of the tree cover distribution and n is the number of points. To ignore small bumps in the frequency distributions, we used a dimensionless sensitivity parameter. This parameter filters out weak modes in the distributions such that a higher value implies a stricter criterion to detect a significant mode. In the manuscript, we used a value of 0.005. For different values of this sensitivity parameter, we here test the estimated critical thresholds and bistability ranges (Extended Data Table 2 ). We inferred stable and unstable states of tree cover (minima and maxima in the potentials) for moving windows of the climatic variables. For mean annual precipitation, we used increments of 10 mm yr −1 between 0 and 3500 mm yr −1 . For dry season length, we used increments of 0.1 months between 0 and 12 months. For MCWD, we used increments of 10 mm between −800 mm and 0 mm.

Transition potential

We quantified a relative ecosystem transition potential across the Amazon forest biome (excluding accumulated deforestation; https://amazonia.mapbiomas.org ) to produce a simple spatial measure that can be useful for governance. For this, we combined information per pixel, at 5 km resolution, about different disturbances related to climatic and human disturbances, as well as high-governance areas within protected areas and Indigenous territories. We used values of significant slopes of the dry season (July–October) mean temperature between 1981 and 2020 ( P  < 0.1), estimated using simple linear regressions (at 0.5° resolution from CRU) (Fig. 1a ). Ecosystem stability classes (stable forest, bistable and stable savanna as in Extended Data Fig. 1 ) were estimated using simple linear regression slopes of annual rainfall between 1981 and 2020 ( P  < 0.1) (at 0.05° resolution from CHIRPS), which we extrapolated to 2050 (Fig. 1b and Extended Data Fig. 3 ). Distribution of areas affected by repeated extreme drought events (Fig. 1c ) were defined when the time series (2001–2018) of the MCWD reached two standard deviation anomalies from historical mean. Extreme droughts were obtained from Lapola et al. 39 , based on Climatic Research Unit gridded Time Series (CRU TS 4.0) datasets for precipitation and evapotranspiration. The network of roads (paved and unpaved) across the Amazon forest biome (Fig. 1d ) was obtained from the Amazon Network of Georeferenced Socio-Environmental Information (RAISG; https://geo2.socioambiental.org/raisg ). Protected areas (PAs) and Indigenous territories (Fig. 1e ) were also obtained from RAISG, and include both sustainable-use and restricted-use protected areas managed by national or sub-national governments, together with officially recognized and proposed Indigenous territories. We combined these different disturbance layers by adding a value for each layer in the following way: (1) slopes of dry season temperature change (as in Fig. 1a , multiplied by 10, thus between −0.1 and +0.6); (2) ecosystem stability classes estimated for year 2050 (as in Fig. 1b ), with 0 for stable forest, +1 for bistable and +2 for stable savanna; (3) accumulated impacts from repeated extreme drought events (from 0 to 5 events), with +0.2 for each event; (4) road-related human impacts, with +1 for pixels within 10 km from a road; and (5) protected areas and Indigenous territories as areas with lower exposure to human (land use) disturbances, such as deforestation and forest fires, with −1 for pixels inside these areas. The sum of these layers revealed relative spatial variation in ecosystem transition potential by 2050 across the Amazon (Fig. 1f ), ranging from −1 (low potential) to 4 (very high potential).

Atmospheric moisture tracking

To determine the atmospheric moisture flows between the Amazonian countries, we use the Lagrangian atmospheric moisture tracking model UTrack 132 . The model tracks the atmospheric trajectories of parcels of moisture, updates their coordinates at each time step of 0.1 h and allocates moisture to a target location in case of precipitation. For each millimetre of evapotranspiration, 100 parcels are released into the atmosphere. Their trajectories are forced with evaporation, precipitation, and wind speed estimates from the ERA5 reanalysis product at 0.25° horizontal resolution for 25 atmospheric layers 133 . Here we use the runs from Tuinenburg et al. 134 , who published monthly climatological mean (2008–2017) moisture flows between each pair of 0.5° grid cells on Earth. We aggregated these monthly flows, resulting in mean annual moisture flows between all Amazonian countries during 2008–2017. For more details of the model runs, we refer to Tuinenburg and Staal 132 and Tuinenburg et al. 134 .

Reporting summary

Further information on research design is available in the  Nature Portfolio Reporting Summary linked to this article.

Data availability

All data supporting the findings of this study are openly available and their sources are presented in the Methods.

Science Panel for the Amazon. Amazon Assessment Report 2021 (2021); www.theamazonwewant.org/amazon-assessment-report-2021/ .

IPCC. Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) https://www.ipcc.ch/report/ar6/wg1/#FullReport (Cambridge Univ. Press, 2021).

Armstrong McKay, D. et al. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science 377 , abn7950 (2022).

Article   Google Scholar  

Staal, A. et al. Forest-rainfall cascades buffer against drought across the Amazon. Nat. Clim. Change 8 , 539–543 (2018).

Article   ADS   Google Scholar  

Cano, I. M. et al. Abrupt loss and uncertain recovery from fires of Amazon forests under low climate mitigation scenarios. Proc. Natl Acad. Sci. USA 119 , e2203200119 (2022).

Article   CAS   PubMed   PubMed Central   Google Scholar  

Parry, I. M., Ritchie, P. D. L. & Cox, P. M. Evidence of localised Amazon rainforest dieback in CMIP6 models. Earth Syst. Dynam. 13 , 1667–1675 (2022).

Bromham, L. et al. Global predictors of language endangerment and the future of linguistic diversity. Nat. Ecol. Evol. 6 , 163–173 (2022).

Article   PubMed   Google Scholar  

Gomes, V. H. F., Vieira, I. C. G., Salomão, R. P. & ter Steege, H. Amazonian tree species threatened by deforestation and climate change. Nat. Clim. Change 9 , 547–553 (2019).

Cámara-Leret, R., Fortuna, M. A. & Bascompte, J. Indigenous knowledge networks in the face of global change. Proc. Natl Acad. Sci. USA 116 , 9913–9918 (2019).

Article   ADS   PubMed   PubMed Central   Google Scholar  

Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413 , 591–596 (2001).

Article   ADS   CAS   PubMed   Google Scholar  

Rockstrom, J. et al. A safe operating space for humanity. Nature 461 , 472–475 (2009).

Article   ADS   PubMed   Google Scholar  

Scheffer, M. et al. Creating a safe operating space for iconic ecosystems. Science 347 , 1317–1319 (2015).

van Nes, E. H. et al. What do you mean, ‘tipping point’? Trends Ecol. Evol. 31 , 902–904 (2016).

Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105 , 1786–1793 (2008).

Article   ADS   CAS   PubMed   PubMed Central   Google Scholar  

Flores, B. M. & Staal, A. Feedback in tropical forests of the Anthropocene. Global Change Biol. 28 , 5041–5061 (2022).

Article   CAS   Google Scholar  

Scheffer, M. Critical Transitions in Nature and Society (Princeton Univ. Press, 2009).

Scheffer, M. et al. Anticipating critical transitions. Science 338 , 344–348 (2012).

Holling, C. S. Engineering Resilience versus Ecological Resilience (National Academy Press, 1996).

Hoorn, C. et al. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330 , 927–931 (2010).

Wang, X. et al. Hydroclimate changes across the Amazon lowlands over the past 45,000 years. Nature 541 , 204–207 (2017).

Kukla, T. et al. The resilience of Amazon tree cover to past and present drying. Global Planet. Change 202 , 103520 (2021).

Clement, C. R. et al. Disentangling domestication from food production systems in the neotropics. Quaternary 4 , 4 (2021).

Mayle, F. E. & Power, M. J. Impact of a drier Early–Mid-Holocene climate upon Amazonian forests. Phil. Trans. R. Soc. B 363 , 1829–1838 (2008).

Article   PubMed   PubMed Central   Google Scholar  

Montoya, E. & Rull, V. Gran Sabana fires (SE Venezuela): a paleoecological perspective. Quat. Sci. Rev. 30 , 3430–3444 (2011).

Rull, V., Montoya, E., Vegas-Vilarrúbia, T. & Ballesteros, T. New insights on palaeofires and savannisation in northern South America. Quat. Sci. Rev. 122 , 158–165 (2015).

Rossetti, D. F. et al. Unfolding long-term Late Pleistocene-Holocene disturbances of forest communities in the southwestern Amazonian lowlands. Ecosphere 9 , e02457 (2018).

Prance, G. T. & Schubart, H. O. R. Notes on the vegetation of Amazonia I. A preliminary note on the origin of the open white sand campinas of the lower Rio Negro. Brittonia 30 , 60 (1978).

Wright, J. L. et al. Sixteen hundred years of increasing tree cover prior to modern deforestation in Southern Amazon and central Brazilian savannas. Glob. Change Biol. 27 , 136–150 (2021).

Article   ADS   CAS   Google Scholar  

van der Sleen, P. et al. No growth stimulation of tropical trees by 150 years of CO 2 fertilization but water-use efficiency increased. Nat. Geosci. 8 , 24–28 (2015).

Smith, M. N. et al. Empirical evidence for resilience of tropical forest photosynthesis in a warmer world. Nat. Plants 6 , 1225–1230 (2020).

Article   CAS   PubMed   Google Scholar  

Marengo, J. A., Jimenez, J. C., Espinoza, J.-C., Cunha, A. P. & Aragão, L. E. O. Increased climate pressure on the agricultural frontier in the Eastern Amazonia–Cerrado transition zone. Sci. Rep. 12 , 457 (2022).

Tavares, J. V. et al. Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests. Nature 617 , 111–117 (2023).

Boulton, C. A., Lenton, T. M. & Boers, N. Pronounced loss of Amazon rainforest resilience since the early 2000s. Nat. Clim. Change 12 , 271–278 (2022).

Doughty, C. E. et al. Tropical forests are approaching critical temperature thresholds. Nature 621 , 105–111 (2023).

Xu, C., Kohler, T. A., Lenton, T. M., Svenning, J.-C. & Scheffer, M. Future of the human climate niche. Proc. Natl Acad. Sci. USA 117 , 11350–11355 (2020).

Sullivan, M. J. P. et al. Long-term thermal sensitivity of Earth’s tropical forests. Science 368 , 869–874 (2020).

Zemp, D. C. et al. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat. Commun. 8 , 14681 (2017).

Bullock, E. L., Woodcock, C. E., Souza, C. Jr & Olofsson, P. Satellite-based estimates reveal widespread forest degradation in the Amazon. Global Change Biol. 26 , 2956–2969 (2020).

Lapola, D. M. et al. The drivers and impacts of Amazon forest degradation. Science 379 , eabp8622 (2023).

Feng, Y., Negrón-Juárez, R. I., Romps, D. M. & Chambers, J. Q. Amazon windthrow disturbances are likely to increase with storm frequency under global warming. Nat. Commun. 14 , 101 (2023).

Anderson, L. O. et al. Vulnerability of Amazonian forests to repeated droughts. Phil. Trans. R. Soc. B 373 , 20170411 (2018).

Staal, A. et al. Feedback between drought and deforestation in the Amazon. Environ. Res. Lett. 15 , 044024 (2020).

Alencar, A. A., Brando, P. M., Asner, G. P. & Putz, F. E. Landscape fragmentation, severe drought, and the new Amazon forest fire regime. Ecol. Appl. 25 , 1493–1505 (2015).

Aragão, L. E. O. C. et al. 21st century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9 , 536 (2018).

Silvério, D. V. et al. Intensification of fire regimes and forest loss in the Território Indígena do Xingu. Environ. Res. Lett. 17 , 045012 (2022).

Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519 , 344–348 (2015).

Esquivel‐Muelbert, A. et al. Compositional response of Amazon forests to climate change. Glob. Change Biol. 25 , 39–56 (2019).

Gatti, L. V. et al. Amazonia as a carbon source linked to deforestation and climate change. Nature 595 , 388–393 (2021).

Nepstad, D. et al. Inhibition of Amazon deforestation and fire by parks and Indigenous lands: inhibition of Amazon deforestation and fire. Conserv. Biol. 20 , 65–73 (2006).

Botelho, J., Costa, S. C. P., Ribeiro, J. G. & Souza, C. M. Mapping roads in the Brazilian Amazon with artificial intelligence and Sentinel-2. Remote Sensing 14 , 3625 (2022).

Matricardi, E. A. T. et al. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 369 , 1378–1382 (2020).

Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of free‐air CO 2 enrichment (FACE)? A meta‐analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO 2 . New Phytol. 165 , 351–372 (2005).

Kooperman, G. J. et al. Forest response to rising CO 2 drives zonally asymmetric rainfall change over tropical land. Nat. Clim. Change 8 , 434–440 (2018).

Lapola, D. M., Oyama, M. D. & Nobre, C. A. Exploring the range of climate biome projections for tropical South America: the role of CO 2 fertilization and seasonality: future biome distribution in South America. Global Biogeochem. Cycles 23 , https://doi.org/10.1029/2008GB003357 (2009).

Brienen, R. J. W. et al. Forest carbon sink neutralized by pervasive growth-lifespan trade-offs. Nat. Commun. 11 , 4241 (2020).

Lammertsma, E. I. et al. Global CO 2 rise leads to reduced maximum stomatal conductance in Florida vegetation. Proc. Natl Acad. Sci. USA 108 , 4035–4040 (2011).

Terrer, C. et al. Nitrogen and phosphorus constrain the CO 2 fertilization of global plant biomass. Nat. Clim. Change 9 , 684–689 (2019).

Ellsworth, D. S. et al. Elevated CO 2 does not increase eucalypt forest productivity on a low-phosphorus soil. Nat. Clim. Change 7 , 279–282 (2017).

Quesada, C. A. et al. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9 , 2203–2246 (2012).

Flores, B. M. et al. Soil erosion as a resilience drain in disturbed tropical forests. Plant Soil https://doi.org/10.1007/s11104-019-04097-8 (2020).

Longo, M. et al. Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts. New Phytol. 219 , 914–931 (2018).

Levine, N. M. et al. Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change. Proc. Natl Acad. Sci. USA 113 , 793–797 (2016).

Staver, A. C. et al. Thinner bark increases sensitivity of wetter Amazonian tropical forests to fire. Ecol. Lett. 23 , 99–106 (2020).

Mattos, C. R. C. et al. Double stress of waterlogging and drought drives forest–savanna coexistence. Proc. Natl Acad. Sci. USA 120 , e2301255120 (2023).

Flores, B. M. et al. Floodplains as an Achilles’ heel of Amazonian forest resilience. Proc. Natl Acad. Sci. USA 114 , 4442–4446 (2017).

Marengo, J. A. & Espinoza, J. C. Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. Int. J. Climatol. 36 , 1033–1050 (2016).

Boers, N., Marwan, N., Barbosa, H. M. J. & Kurths, J. A deforestation-induced tipping point for the South American monsoon system. Sci. Rep. 7 , 41489 (2017).

Alexander, C. et al. Linking Indigenous and scientific knowledge of climate change. BioScience 61 , 477–484 (2011).

Ford, J. D. et al. The resilience of Indigenous peoples to environmental change. One Earth 2 , 532–543 (2020).

Cooper, G. S., Willcock, S. & Dearing, J. A. Regime shifts occur disproportionately faster in larger ecosystems. Nat. Commun. 11 , 1175 (2020).

Drijfhout, S. et al. Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. Proc. Natl Acad. Sci. USA 112 , E5777–E5786 (2015).

Salazar, L. F. & Nobre, C. A. Climate change and thresholds of biome shifts in Amazonia: climate change and Amazon biome shift. Geophys. Res. Lett. 37 , https://doi.org/10.1029/2010GL043538 (2010).

Jones, C., Lowe, J., Liddicoat, S. & Betts, R. Committed terrestrial ecosystem changes due to climate change. Nat. Geosci. 2 , 484–487 (2009).

Schellnhuber, H. J., Rahmstorf, S. & Winkelmann, R. Why the right climate target was agreed in Paris. Nat. Clim. Change 6 , 649–653 (2016).

Chai, Y. et al. Constraining Amazonian land surface temperature sensitivity to precipitation and the probability of forest dieback. npj Clim. Atmos. Sci. 4 , 6 (2021).

Brando, P. M. et al. Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Proc. Natl Acad. Sci. USA 111 , 6347–6352 (2014).

Berenguer, E. et al. Tracking the impacts of El Niño drought and fire in human-modified Amazonian forests. Proc. Natl Acad. Sci. USA 118 , e2019377118 (2021).

Staal, A. et al. Hysteresis of tropical forests in the 21st century. Nat. Commun. 11 , 4978 (2020).

Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334 , 230–232 (2011).

Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106 , 20610–20615 (2009).

Nobre, C. A. et al. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proc. Natl Acad. Sci. USA 113 , 10759–10768 (2016).

Burton, C. et al. South American fires and their impacts on ecosystems increase with continued emissions. Clim. Resil. Sustain. 1 , e8 (2022).

Google Scholar  

Smith, C. C. et al. Old-growth forest loss and secondary forest recovery across Amazonian countries. Environ. Res. Lett. 16 , 085009 (2021).

Brando, P. M. et al. Prolonged tropical forest degradation due to compounding disturbances: Implications for CO 2 and H 2 O fluxes. Glob. Change Biol. 25 , 2855–2868 (2019).

Mesquita, R. C. G., Ickes, K., Ganade, G. & Williamson, G. B. Alternative successional pathways in the Amazon Basin: successional pathways in the Amazon. J. Ecol. 89 , 528–537 (2001).

Jakovac, C. C., Peña-Claros, M., Kuyper, T. W. & Bongers, F. Loss of secondary-forest resilience by land-use intensification in the Amazon. J. Ecol. 103 , 67–77 (2015).

Barlow, J. & Peres, C. A. Fire-mediated dieback and compositional cascade in an Amazonian forest. Phil. Trans. R. Soc. B 363 , 1787–1794 (2008).

Jakovac, A. C. C., Bentos, T. V., Mesquita, R. C. G. & Williamson, G. B. Age and light effects on seedling growth in two alternative secondary successions in central Amazonia. Plant Ecol. Divers. 7 , 349–358 (2014).

Mazzochini, G. G. & Camargo, J. L. C. Understory plant interactions along a successional gradient in Central Amazon. Plant Soil https://doi.org/10.1007/s11104-019-04100-2 (2020).

Schnitzer, S. A. & Bongers, F. Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms: Increasing lianas in tropical forests. Ecology Letters 14 , 397–406 (2011).

Tymen, B. et al. Evidence for arrested succession in a liana-infested Amazonian forest. J Ecol 104 , 149–159 (2016).

da Silva, S. S. et al. Increasing bamboo dominance in southwestern Amazon forests following intensification of drought-mediated fires. For. Ecol. Manag. 490 , 119139 (2021).

Carvalho, A. Lde et al. Bamboo-dominated forests of the southwest Amazon: detection, spatial extent, life cycle length and flowering waves. PLoS ONE 8 , e54852 (2013).

Adeney, J. M., Christensen, N. L., Vicentini, A. & Cohn‐Haft, M. White‐sand ecosystems in Amazonia. Biotropica 48 , 7–23 (2016).

Flores, B. M. & Holmgren, M. White-sand savannas expand at the core of the Amazon after forest wildfires. Ecosystems 24 , 1624–1637 (2021).

Veldman, J. W. & Putz, F. E. Grass-dominated vegetation, not species-diverse natural savanna, replaces degraded tropical forests on the southern edge of the Amazon Basin. Biol. Conserv. 144 , 1419–1429 (2011).

Silvério, D. V. et al. Testing the Amazon savannization hypothesis: fire effects on invasion of a neotropical forest by native cerrado and exotic pasture grasses. Phil. Trans. R. Soc. B 368 , 20120427 (2013).

Rull, V. A palynological record of a secondary succession after fire in the Gran Sabana, Venezuela. J. Quat. Sci. 14 , 137–152 (1999).

Sakschewski, B. et al. Resilience of Amazon forests emerges from plant trait diversity. Nat. Clim. Change 6 , 1032–1036 (2016).

Hall, A., Cox, P., Huntingford, C. & Klein, S. Progressing emergent constraints on future climate change. Nat. Clim. Change 9 , 269–278 (2019).

Willcock, S., Cooper, G. S., Addy, J. & Dearing, J. A. Earlier collapse of Anthropocene ecosystems driven by multiple faster and noisier drivers. Nat. Sustain 6 , 1331–1342 (2023).

Davidson, E. A. et al. The Amazon basin in transition. Nature 481 , 321–328 (2012).

Hecht, S. B. From eco-catastrophe to zero deforestation? Interdisciplinarities, politics, environmentalisms and reduced clearing in Amazonia. Envir. Conserv. 39 , 4–19 (2012).

Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334 , 232–235 (2011).

Hawes, J. E. et al. A large‐scale assessment of plant dispersal mode and seed traits across human‐modified Amazonian forests. J. Ecol. 108 , 1373–1385 (2020).

Flores, B. M. & Holmgren, M. Why forest fails to recover after repeated wildfires in Amazonian floodplains? Experimental evidence on tree recruitment limitation. J. Ecol. 109 , 3473–3486 (2021).

ter Steege, H. et al. Biased-corrected richness estimates for the Amazonian tree flora. Sci. Rep. 10 , 10130 (2020).

Poorter, L. et al. Diversity enhances carbon storage in tropical forests: Carbon storage in tropical forests. Global Ecol. Biogeogr. 24 , 1314–1328 (2015).

Walker, B., Kinzig, A. & Langridge, J. Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2 , 95–113 (1999).

Elmqvist, T. et al. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1 , 488–494 (2003).

Esquivel-Muelbert, A. et al. Seasonal drought limits tree species across the Neotropics. Ecography 40 , 618–629 (2017).

Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333 , 301–306 (2011).

Garnett, S. T. et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 1 , 369–374 (2018).

Morcote-Ríos, G., Aceituno, F. J., Iriarte, J., Robinson, M. & Chaparro-Cárdenas, J. L. Colonisation and early peopling of the Colombian Amazon during the Late Pleistocene and the Early Holocene: new evidence from La Serranía La Lindosa. Quat. Int. 578 , 5–19 (2021).

Levis, C. et al. How people domesticated Amazonian forests. Front. Ecol. Evol. 5 , 171 (2018).

Clement, C. R. et al. The domestication of Amazonia before European conquest. Proc. R. Soc. B. 282 , 20150813 (2015).

Levis, C. et al. Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science 355 , 925–931 (2017).

Coelho, S. D. et al. Eighty-four per cent of all Amazonian arboreal plant individuals are useful to humans. PLoS ONE 16 , e0257875 (2021).

de Souza, J. G. et al. Climate change and cultural resilience in late pre-Columbian Amazonia. Nat. Ecol. Evol. 3 , 1007–1017 (2019).

Furquim, L. P. et al. Facing change through diversity: resilience and diversification of plant management strategies during the Mid to Late Holocene Transition at the Monte Castelo shellmound, SW Amazonia. Quaternary 4 , 8 (2021).

Schmidt, M. V. C. et al. Indigenous knowledge and forest succession management in the Brazilian Amazon: contributions to reforestation of degraded areas. Front. For. Glob. Change 4 , 605925 (2021).

Tomioka Nilsson, M. S. & Fearnside, P. M. Yanomami mobility and its effects on the forest landscape. Hum. Ecol. 39 , 235–256 (2011).

Cámara-Leret, R. & Bascompte, J. Language extinction triggers the loss of unique medicinal knowledge. Proc. Natl Acad. Sci. USA 118 , e2103683118 (2021).

DiMiceli, C. et al. MOD44B MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250 m SIN Grid V006. https://doi.org/10.5067/MODIS/MOD44B.006 (2015).

Sexton, J. O. et al. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int. J. Digital Earth 6 , 427–448 (2013).

Staver, A. C. & Hansen, M. C. Analysis of stable states in global savannas: is the CART pulling the horse? – a comment. Global Ecol. Biogeogr. 24 , 985–987 (2015).

Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci Data 2 , 150066 (2015).

Mitchell, T. D. & Jones, P. D. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol. 25 , 693–712 (2005).

Giglio, L., Schroeder, W. & Justice, C. O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 178 , 31–41 (2016).

Livina, V. N., Kwasniok, F. & Lenton, T. M. Potential analysis reveals changing number of climate states during the last 60 kyr. Clim. Past 6 , 77–82 (2010).

Silverman, B. W. Density Estimation for Statistics and Data Analysis (Chapman & Hall/CRC Taylor & Francis Group, 1998).

Tuinenburg, O. A. & Staal, A. Tracking the global flows of atmospheric moisture and associated uncertainties. Hydrol. Earth Syst. Sci. 24 , 2419–2435 (2020).

Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146 , 1999–2049 (2020).

Tuinenburg, O. A., Theeuwen, J. J. E. & Staal, A. High-resolution global atmospheric moisture connections from evaporation to precipitation. Earth Syst. Sci. Data 12 , 3177–3188 (2020).

Oliveira, R. S. et al. Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro‐topographic gradients. New Phytol. 221 , 1457–1465 (2019).

Mattos, C. R. C. et al. Rainfall and topographic position determine tree embolism resistance in Amazônia and Cerrado sites. Environ. Res. Lett. 18 , 114009 (2023).

NASA JPL. NASA Shuttle Radar Topography Mission Global 1 arc second. https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003 (2013).

Hess, L. L. et al. Wetlands of the Lowland Amazon Basin: Extent, Vegetative Cover, and Dual-season Inundated Area as Mapped with JERS-1 Synthetic Aperture Radar. Wetlands 35 , 745–756 (2015).

Eberhard, D. M., Simons, G. F. & Fennig, C. D. Ethnologue: Languages of the World . (SIL International, 2021).

Download references

Acknowledgements

This work was inspired by the Science Panel for the Amazon (SPA) initiative ( https://www.theamazonwewant.org/ ) that produced the first Amazon Assessment Report (2021). The authors thank C. Smith for providing deforestation rates data used in Extended Data Fig. 5b . B.M.F. and M.H. were supported by Instituto Serrapilheira (Serra-1709-18983) and C.J. (R-2111-40341). A.S. acknowledges funding from the Dutch Research Council (NWO) under the Talent Program Grant VI.Veni.202.170. R.A.B. and D.M.L. were supported by the AmazonFACE programme funded by the UK Foreign, Commonwealth and Development Office (FCDO) and Brazilian Ministry of Science, Technology and Innovation (MCTI). R.A.B. was additionally supported by the Met Office Climate Science for Service Partnership (CSSP) Brazil project funded by the UK Department for Science, Innovation and Technology (DSIT), and D.M.L. was additionally supported by FAPESP (grant no. 2020/08940-6) and CNPq (grant no. 309074/2021-5). C.L. thanks CNPq (proc. 159440/2018-1 and 400369/2021-4) and Brazil LAB (Princeton University) for postdoctoral fellowships. A.E.-M. is supported by the UKRI TreeScapes MEMBRA (NE/V021346/1), the Royal Society (RGS\R1\221115), the ERC TreeMort project (758873) and the CESAB Syntreesys project. R.S.O. received a CNPq productivity scholarship and funding from NERC-FAPESP 2019/07773-1. S.B.H. is supported by the Geneva Graduate Institute research funds, and UCLA’s committee on research. J.A.M. is supported by the National Institute of Science and Technology for Climate Change Phase 2 under CNPq grant 465501/2014-1; FAPESP grants 2014/50848-9, the National Coordination for Higher Education and Training (CAPES) grant 88887.136402-00INCT. L.S.B. received FAPESP grant 2013/50531-0. D.N. and N.B. acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 820970. N.B. has received further funding from the Volkswagen foundation, the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 956170, as well as from the German Federal Ministry of Education and Research under grant no. 01LS2001A.

Author information

Authors and affiliations.

Graduate Program in Ecology, Federal University of Santa Catarina, Florianopolis, Brazil

Bernardo M. Flores, Carolina Levis & Marina Hirota

Geosciences Barcelona, Spanish National Research Council, Barcelona, Spain

Encarni Montoya

Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany

Boris Sakschewski, Da Nian & Niklas Boers

Institute of Advanced Studies, University of São Paulo, São Paulo, Brazil

Nathália Nascimento & Carlos A. Nobre

Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands

Met Office Hadley Centre, Exeter, UK

Richard A. Betts

Global Systems Institute, University of Exeter, Exeter, UK

Center for Meteorological and Climatic Research Applied to Agriculture, University of Campinas, Campinas, Brazil

David M. Lapola

School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK

Adriane Esquível-Muelbert

Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK

Department of Plant Sciences, Federal University of Santa Catarina, Florianopolis, Brazil

Catarina Jakovac

Department of Plant Biology, University of Campinas, Campinas, Brazil

Rafael S. Oliveira & Marina Hirota

Division of Impacts, Adaptation and Vulnerabilities (DIIAV), National Institute for Space Research, São José dos Campos, Brazil

Laura S. Borma & Luciana V. Gatti

Earth System Modelling, School of Engineering and Design, Technical University of Munich, Munich, Germany

Niklas Boers

Luskin School for Public Affairs and Institute of the Environment, University of California, Los Angeles, CA, USA

Susanna B. Hecht

Naturalis Biodiversity Center, Leiden, The Netherlands

Hans ter Steege

Quantitative Biodiversity Dynamics, Utrecht University, Utrecht, The Netherlands

Science Panel for the Amazon (SPA), São José dos Campos, Brazil

Julia Arieira

Sustainable Development Solutions Network, New York, NY, USA

Isabella L. Lucas

Environmental Change Institute, University of Oxford, Oxford, UK

Erika Berenguer

Centro Nacional de Monitoramento e Alerta de Desastres Naturais, São José dos Campos, Brazil

José A. Marengo

Graduate Program in Natural Disasters, UNESP/CEMADEN, São José dos Campos, Brazil

Graduate School of International Studies, Korea University, Seoul, Korea

Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA

Caio R. C. Mattos

Group IpES, Department of Physics, Federal University of Santa Catarina, Florianopolis, Brazil

Marina Hirota

You can also search for this author in PubMed   Google Scholar

Contributions

B.M.F. and M.H. conceived the study. B.M.F. reviewed the literature, with inputs from all authors. B.M.F., M.H., N.N., A.S., C.L., D.N, H.t.S. and C.R.C.M. assembled datasets. M.H. analysed temperature and rainfall trends. B.M.F. and N.N. produced the maps in main figures and calculated transition potential. A.S. performed potential analysis and atmospheric moisture tracking. B.M.F. produced the figures and wrote the manuscript, with substantial inputs from all authors. B.S. wrote the first version of the ‘Prospects for modelling Amazon forest dynamics’ section, with inputs from B.M.F and M.H.

Corresponding authors

Correspondence to Bernardo M. Flores or Marina Hirota .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Peer review

Peer review information.

Nature thanks Chris Huntingford and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer review reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended data fig. 1 alternative stable states in amazonian tree cover relative to rainfall conditions..

Potential analysis of tree cover distributions across rainfall gradients in the Amazon basin suggest the existence of critical thresholds and alternative stable states in the system. For this, we excluded accumulated deforestation until 2020 and included large areas of tropical savanna biome in the periphery of the Amazon basin (see  Methods ). Solid black lines indicate two stable equilibria. Small grey arrows indicate the direction towards equilibrium. (a) The overlap between ~ 1,000 and 1,800 mm of annual rainfall suggests that two alternative stable states may exist (bistability): a high tree cover state ~ 80 % (forests), and a low tree cover state ~ 20% (savannas). Tree cover around 50 % is rare, indicating an unstable state. Below 1,000 mm of annual rainfall, forests are rare, indicating a potential critical threshold for abrupt forest transition into a low tree cover state 79 , 104 (arrow 1). Between 1,000 and 1,800 mm of annual rainfall, the existence of alternative stable states implies that forests can shift to a low tree cover stable state in response to disturbances (arrow 2). Above 1,800 mm of annual rainfall, low tree cover becomes rare, indicating a potential critical threshold for an abrupt transition into a high tree cover state. In this stable forest state, forests are expected to always recover after disturbances (arrow 3), although composition may change 47 , 85 . (b) Currently, the stable savanna state covers 1 % of the Amazon forest biome, bistable areas cover 13 % of the biome (less than previous analysis using broader geographical ranges 78 ) and the stable forest state covers 86 % of the biome. Similar analyses using the maximum cumulative water deficit (c) and the dry season length (d) also suggest the existence of critical thresholds and alternative stable states. When combined, these critical thresholds in rainfall conditions could result in a tipping point of the Amazon forest in terms of water stress, but other factors may play a role, such as groundwater availability 64 . MODIS VCF may contain some level of uncertainty for low tree cover values, as shown by the standard deviation of tree cover estimates across the Amazon (Extended Data Fig. 8 ). However, the dataset is relatively robust for assessing bistability within the tree cover range between forest and savanna 126 .

Extended Data Fig. 2 Changes in dry-season temperatures across the Amazon basin.

(a) Dry season temperature averaged from mean annual data observed between 1981 and 2010. (b) Changes in dry season mean temperature based on the difference between the projected future (2021−2050) and observed historical (1981−2010) climatologies. Future climatology was obtained from the estimated slopes using historical CRU data 128 (shown in Fig. 1a ). (c, d) Changes in the distributions of dry season mean and maximum temperatures for the Amazon basin. (e) Correlation between dry-season mean and maximum temperatures observed (1981–2010) across the Amazon basin ( r  = 0.95).

Extended Data Fig. 3 Changes in annual precipitation and ecosystem stability across the Amazon forest biome.

(a) Slopes of annual rainfall change between 1981 and 2020 estimated using simple regressions (only areas with significant slopes, p  < 0.1). (b) Changes in ecosystem stability classes projected for year 2050, based on significant slopes in (a) and critical thresholds in annual rainfall conditions estimated in Extended Data Fig. 1 . Data obtained from Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), at 0.05° spatial resolution 127 .

Extended Data Fig. 4 Changes in ecosystem stability by 2050 across the Amazon based on annual rainfall projected by CMIP6 models.

(a) Changes in stability classes estimated using an ensemble with the five CMIP6 models that include vegetation modules (coupled for climate-vegetation feedbacks) for two emission scenarios (Shared Socio-economic Pathways - SSPs). (b) Changes in stability classes estimated using an ensemble with all 33 CMIP6 models for the same emission scenarios. Stability changes may occur between stable forest (F), stable savanna (S) and bistable (B) classes, based on the bistability range of 1,000 – 1,800 mm in annual rainfall, estimated from current rainfall conditions (see Extended Data Fig. 1 ). Projections are based on climate models from the 6 th Phase of the Coupled Model Intercomparison Project (CMIP6). SSP2-4.5 is a low-emission scenario of future global warming and SSP5-8.5 is a high-emission scenario. The five coupled models analysed separately in (a) were: EC-Earth3-Veg, GFDL-ESM4, MPI-ESM1-2-LR, TaiESM1 and UKESM1-0-LL (Supplementary Information Table 1 ).

Extended Data Fig. 5 Deforestation continues to expand within the Amazon forest system.

(a) Map highlighting deforestation and fire activity between 2012 and 2021, a period when environmental governance began to weaken again, as indicated by increasing rates of annual deforestation in (b). In (b), annual deforestation rates for the entire Amazon biome were adapted with permission from Smith et al. 83 .

Extended Data Fig. 6 Environmental heterogeneity in the Amazon forest system.

Heterogeneity involves myriad factors, but two in particular, related to water availability, were shown to contribute to landscape-scale heterogeneity in forest resilience; topography shapes fine-scale variations of forest drought-tolerance 135 , 136 , and floodplains may reduce forest resilience by increasing vulnerability to wildfires 65 . Datasets: topography is shown by the Shuttle Radar Topography Mission (SRTM; https://earthexplorer.usgs.gov/ ) 137 at 90 m resolution; floodplains and uplands are separated with the Amazon wetlands mask 138 at 90 m resolution.

Extended Data Fig. 7 The Amazon is biologically and culturally diverse.

(a) Tree species richness and (b) language richness illustrate how biological and cultural diversity varies across the Amazon. Diverse tree communities and human cultures contribute to increasing forest resilience in various ways that are being undermined by land-use and climatic changes. Datasets: (a) Amazon Tree Diversity Network (ATDN, https://atdn.myspecies.info ). (b) World Language Mapping System (WLMS) obtained under license from Ethnologue 139 .

Extended Data Fig. 8 Uncertainty of the MODIS VCF dataset across the Amazon basin.

Map shows standard deviation (SD) of tree cover estimates from MODIS VCF 124 . We masked deforested areas until 2020 using the MapBiomas Amazonia Project (2022; https://amazonia.mapbiomas.org ).

Supplementary information

Supplementary information, reporting summary, peer review file, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Flores, B.M., Montoya, E., Sakschewski, B. et al. Critical transitions in the Amazon forest system. Nature 626 , 555–564 (2024). https://doi.org/10.1038/s41586-023-06970-0

Download citation

Received : 29 August 2022

Accepted : 13 December 2023

Published : 14 February 2024

Issue Date : 15 February 2024

DOI : https://doi.org/10.1038/s41586-023-06970-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

case study 3 htm

College of Nursing

Driving change: a case study of a dnp leader in residence program in a gerontological center of excellence.

View as pdf A later version of this article appeared in Nurse Leader , Volume 21, Issue 6 , December 2023 . 

The American Association of Colleges of Nursing (AACN) published the Essentials of Doctoral Education for Advanced Practice Nursing in 2004 identifying the essential curriculum needed for preparing advanced practice nurse leaders to effectively assess organizations, identify systemic issues, and facilitate organizational changes. 1 In 2021, AACN updated the curriculum by issuing The Essentials: Core Competencies for Professional Nursing Education to guide the development of competency-based education for nursing students. 1 In addition to AACN’s competency-based approach to curriculum, in 2015 the American Organization of Nurse Leaders (AONL) released Nurse Leader Core Competencies (updated in 2023) to help provide a competency based model to follow in developing nurse leaders. 2

Despite AACN and AONL competency-based curriculum and model, it is still common for nurse leaders to be promoted to management positions based solely on their work experience or exceptional clinical skills, rather than demonstration of management and leadership competencies. 3 The importance of identifying, training, and assessing executive leaders through formal leadership development programs, within supportive organizational cultures has been discussed by national leaders. As well as the need for nurturing emerging leaders through fostering interprofessional collaboration, mentorship, and continuous development of leadership skills has been identified. 4 As Doctor of Nursing Practice (DNP) nurse leaders assume executive roles within healthcare organizations, they play a vital role within complex systems. Demonstration of leadership competence and participation in formal leadership development programs has become imperative for their success. However, models of competency-based executive leadership development programs can be hard to find, particularly programs outside of health care systems.

The implementation of a DNP Leader in Residence program, such as the one designed for The Barbara and Richard Csomay Center for Gerontological Excellence, addresses many of the challenges facing new DNP leaders and ensures mastery of executive leadership competencies and readiness to practice through exposure to varied experiences and close mentoring. The Csomay Center , based at The University of Iowa, was established in 2000 as one of the five original Hartford Centers of Geriatric Nursing Excellence in the country. Later funding by the Csomay family established an endowment that supports the Center's ongoing work. The current Csomay Center strategic plan and mission aims to develop future healthcare leaders while promoting optimal aging and quality of life for older adults. The Csomay Center Director created the innovative DNP Leader in Residence program to foster the growth of future nurse leaders in non-healthcare systems. The purpose of this paper is to present a case study of the development and implementation of the Leader in Residence program, followed by suggested evaluation strategies, and discussion of future innovation of leadership opportunities in non-traditional health care settings.

Development of the DNP Leader in Residence Program

The Plan-Do-Study-Act (PDSA) cycle has garnered substantial recognition as a valuable tool for fostering development and driving improvement initiatives. 5 The PDSA cycle can function as an independent methodology and as an integral component of broader quality enhancement approaches with notable efficacy in its ability to facilitate the rapid creation, testing, and evaluation of transformative interventions within healthcare. 6 Consequently, the PDSA cycle model was deemed fitting to guide the development and implementation of the DNP Leader in Residence Program at the Csomay Center.

PDSA Cycle: Plan

Existing resources. The DNP Health Systems: Administration/Executive Leadership Program offered by the University of Iowa is comprised of comprehensive nursing administration and leadership curriculum, led by distinguished faculty composed of national leaders in the realms of innovation, health policy, leadership, clinical education, and evidence-based practice. The curriculum is designed to cultivate the next generation of nursing executive leaders, with emphasis on personalized career planning and tailored practicum placements. The DNP Health Systems: Administration/Executive Leadership curriculum includes a range of courses focused on leadership and management with diverse topics such as policy an law, infrastructure and informatics, finance and economics, marketing and communication, quality and safety, evidence-based practice, and social determinants of health. The curriculum is complemented by an extensive practicum component and culminates in a DNP project with additional hours of practicum.

New program. The DNP Leader in Residence program at the Csomay Center is designed to encompass communication and relationship building, systems thinking, change management, transformation and innovation, knowledge of clinical principles in the community, professionalism, and business skills including financial, strategic, and human resource management. The program fully immerses students in the objectives of the DNP Health Systems: Administration/Executive Leadership curriculum and enables them to progressively demonstrate competencies outlined by AONL. The Leader in Residence program also includes career development coaching, reflective practice, and personal and professional accountability. The program is integrated throughout the entire duration of the Leader in Residence’s coursework, fulfilling the required practicum hours for both the DNP coursework and DNP project.

The DNP Leader in Residence program begins with the first semester of practicum being focused on completing an onboarding process to the Center including understanding the center's strategic plan, mission, vision, and history. Onboarding for the Leader in Residence provides access to all relevant Center information and resources and integration into the leadership team, community partnerships, and other University of Iowa College of Nursing Centers associated with the Csomay Center. During this first semester, observation and identification of the Csomay Center Director's various roles including being a leader, manager, innovator, socializer, and mentor is facilitated. In collaboration with the Center Director (a faculty position) and Center Coordinator (a staff position), specific competencies to be measured and mastered along with learning opportunities desired throughout the program are established to ensure a well-planned and thorough immersion experience.

Following the initial semester of practicum, the Leader in Residence has weekly check-ins with the Center Director and Center Coordinator to continue to identify learning opportunities and progression through executive leadership competencies to enrich the experience. The Leader in Residence also undertakes an administrative project for the Center this semester, while concurrently continuing observations of the Center Director's activities in local, regional, and national executive leadership settings. The student has ongoing participation and advancement in executive leadership roles and activities throughout the practicum, creating a well-prepared future nurse executive leader.

After completing practicum hours related to the Health Systems: Administration/Executive Leadership coursework, the Leader in Residence engages in dedicated residency hours to continue to experience domains within nursing leadership competencies like communication, professionalism, and relationship building. During residency hours, time is spent with the completion of a small quality improvement project for the Csomay Center, along with any other administrative projects identified by the Center Director and Center Coordinator. The Leader in Residence is fully integrated into the Csomay Center's Leadership Team during this phase, assisting the Center Coordinator in creating agendas and leading meetings. Additional participation includes active involvement in community engagement activities and presenting at or attending a national conference as a representative of the Csomay Center. The Leader in Residence must mentor a master’s in nursing student during the final year of the DNP Residency.

Implementation of the DNP Leader in Residence Program

PDSA Cycle: Do

Immersive experience. In this case study, the DNP Leader in Residence was fully immersed in a wide range of center activities, providing valuable opportunities to engage in administrative projects and observe executive leadership roles and skills during practicum hours spent at the Csomay Center. Throughout the program, the Leader in Residence observed and learned from multidisciplinary leaders at the national, regional, and university levels who engaged with the Center. By shadowing the Csomay Center Director, the Leader in Residence had the opportunity to observe executive leadership objectives such as fostering innovation, facilitating multidisciplinary collaboration, and nurturing meaningful relationships. The immersive experience within the center’s activities also allowed the Leader in Residence to gain a deep understanding of crucial facets such as philanthropy and community engagement. Active involvement in administrative processes such as strategic planning, budgeting, human resources management, and the development of standard operating procedures provided valuable exposure to strategies that are needed to be an effective nurse leader in the future.

Active participation. The DNP Leader in Residence also played a key role in advancing specific actions outlined in the center's strategic plan during the program including: 1) the creation of a membership structure for the Csomay Center and 2) successfully completing a state Board of Regents application for official recognition as a distinguished center. The Csomay Center sponsored membership for the Leader in Residence in the Midwest Nurse Research Society (MNRS), which opened doors to attend the annual MNRS conference and engage with regional nursing leadership, while fostering socialization, promotion of the Csomay Center and Leader in Residence program, and observation of current nursing research. Furthermore, the Leader in Residence participated in the strategic planning committee and engagement subcommittee for MNRS, collaborating directly with the MNRS president. Additional active participation by the Leader in Residence included attendance in planning sessions and completion of the annual report for GeriatricPain.org , an initiative falling under the umbrella of the Csomay Center. Finally, the Leader in Residence was involved in archiving research and curriculum for distinguished nursing leader and researcher, Dr. Kitty Buckwalter, for the Benjamin Rose Institute on Aging, the University of Pennsylvania Barbara Bates Center for the Study of the History of Nursing, and the University of Iowa library archives.

Suggested Evaluation Strategies of the DNP Leader in Residence Program

PDSA Cycle: Study

Assessment and benchmarking. To effectively assess the outcomes and success of the DNP Leader in Residence Program, a comprehensive evaluation framework should be used throughout the program. Key measures should include the collection and review of executive leadership opportunities experienced, leadership roles observed, and competencies mastered. The Leader in Residence is responsible for maintaining detailed logs of their participation in center activities and initiatives on a semester basis. These logs serve to track the progression of mastery of AONL competencies by benchmarking activities and identifying areas for future growth for the Leader in Residence.

Evaluation. In addition to assessment and benchmarking, evaluations need to be completed by Csomay Center stakeholders (leadership, staff, and community partners involved) and the individual Leader in Residence both during and upon completion of the program. Feedback from stakeholders will identify the contributions made by the Leader in Residence and provide valuable insights into their growth. Self-reflection on experiences by the individual Leader in Residence throughout the program will serve as an important measure of personal successes and identify gaps in the program. Factors such as career advancement during the program, application of curriculum objectives in the workplace, and prospects for future career progression for the Leader in Residence should be considered as additional indicators of the success of the program.

The evaluation should also encompass a thorough review of the opportunities experienced during the residency, with the aim of identifying areas for potential expansion and enrichment of the DNP Leader in Residence program. By carefully examining the logs, reflecting on the acquired executive leadership competencies, and studying stakeholder evaluations, additional experiences and opportunities can be identified to further enhance the program's efficacy. The evaluation process should be utilized to identify specific executive leadership competencies that require further immersion and exploration throughout the program.

Future Innovation of DNP Leader in Residence Programs in Non-traditional Healthcare Settings

PDSA Cycle: Act

As subsequent residents complete the program and their experiences are thoroughly evaluated, it is essential to identify new opportunities for DNP Leader in Residence programs to be implemented in other non-health care system settings. When feasible, expansion into clinical healthcare settings, including long-term care and acute care environments, should be pursued. By leveraging the insights gained from previous Leaders in Residence and their respective experiences, the program can be refined to better align with desired outcomes and competencies. These expansions will broaden the scope and impact of the program and provide a wider array of experiences and challenges for future Leaders in Residency to navigate, enriching their development as dynamic nurse executive leaders within diverse healthcare landscapes.

This case study presented a comprehensive overview of the development and implementation of the DNP Leader in Residence program developed by the Barbara and Richard Csomay Center for Gerontological Excellence. The Leader in Residence program provided a transformative experience by integrating key curriculum objectives, competency-based learning, and mentorship by esteemed nursing leaders and researchers through successful integration into the Center. With ongoing innovation and application of the PDSA cycle, the DNP Leader in Residence program presented in this case study holds immense potential to help better prepare 21 st century nurse leaders capable of driving positive change within complex healthcare systems.

Acknowledgements

         The author would like to express gratitude to the Barbara and Richard Csomay Center for Gerontological Excellence for the fostering environment to provide an immersion experience and the ongoing support for development of the DNP Leader in Residence program. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

  • American Association of Colleges of Nursing. The essentials: core competencies for professional nursing education. https://www.aacnnursing.org/Portals/42/AcademicNursing/pdf/Essentials-2021.pdf . Accessed June 26, 2023.
  • American Organization for Nursing Leadership. Nurse leader core competencies. https://www.aonl.org/resources/nurse-leader-competencies . Accessed July 10, 2023.
  • Warshawsky, N, Cramer, E. Describing nurse manager role preparation and competency: findings from a national study. J Nurs Adm . 2019;49(5):249-255. DOI:  10.1097/NNA.0000000000000746
  • Van Diggel, C, Burgess, A, Roberts, C, Mellis, C. Leadership in healthcare education. BMC Med. Educ . 2020;20(465). doi: 10.1186/s12909-020-02288-x
  • Institute for Healthcare Improvement. Plan-do-study-act (PDSA) worksheet. https://www.ihi.org/resources/Pages/Tools/PlanDoStudyActWorksheet.aspx . Accessed July 4, 2023.
  • Taylor, M, McNicolas, C, Nicolay, C, Darzi, A, Bell, D, Reed, J. Systemic review of the application of the plan-do-study-act method to improve quality in healthcare. BMJ Quality & Safety. 2014:23:290-298. doi: 10.1136/bmjqs-2013-002703

Return to College of Nursing Winter 23/24 Newsletter

IMAGES

  1. Case Study 3 key.pdf

    case study 3 htm

  2. Case study 3: Student Information

    case study 3 htm

  3. what is a typical case study

    case study 3 htm

  4. Three types of case studies

    case study 3 htm

  5. Introduction to Case Study #3: “The

    case study 3 htm

  6. How to Create a Case Study + 14 Case Study Templates

    case study 3 htm

VIDEO

  1. BUSINESS ANALYST CASE STUDY 3

  2. Case Study 3

  3. Case Study 3: Classroom Case Analysis & Intervention Design

  4. AFT1093 MACROECONOMICS 2023/24 ASSIGNMENT 1

  5. CASE STUDY 3

  6. PREVIOUS YEAR QUESTION SOLUTION 2023//CASE STUDY 3 // MATH BASIC//CLASS -X

COMMENTS

  1. Chapter 3: Research Methods

    Chapter 3: Research Methods This study seeks to provide insight into the process of conducting community-based research. In order to do so, the study utilizes a qualitative case study approach to examine the methodology of community-based research.

  2. Case Study 3

    Case Study #3 Ariel Keynan HTM320 Based on everything you've learned so far, what legal issue or issues are raised by this story? That is, what laws (if any) may have been violated? Based on what we've learned this semester, and the information provided in the powerpoint made by Tom and Shane, the hotel will in fact run into legal issues.

  3. HTM 450 case study #3.docx

    Doc Preview HTM 450 CASE STUDY #2 Statte v Boulder Inn 1. What are the issues in this case? Laureen Statte was a guest at the Boulder Inn a hotel in an urban area.

  4. Understanding the Different Types of Case Studies

    These are: Person - This type of study focuses on one particular individual. This case study would use several types of research to determine an outcome. The best example of a person case is the "Genie" case study. Again, "Genie" was a 13-year-old girl who was discovered by social services in Los Angeles in 1970.

  5. NIH Definition of Clinical Trial Case Studies

    Case #3 The study involves the recruitment of research participants with condition X to receive investigational compound A. It is designed to assess the pharmacokinetic properties of compound A. Case #4a The study involves the recruitment of research participants with disease X to receive an investigational drug.

  6. Case Studies

    Case Studies. Case studies are stories that are used as a teaching tool to show the application of a theory or concept to real situations. Dependent on the goal they are meant to fulfill, cases can be fact-driven and deductive where there is a correct answer, or they can be context driven where multiple solutions are possible.

  7. Case Companion

    Case Companion. By: Michael A. Roberto. Case Companion is an engaging and interactive introduction to case study analysis that is ideal for undergraduates or any student new to learning with cases. It is designed to increase students'…. Length: 1 hour. Publication Date: Jun 30, 2022. Discipline: Teaching & the Case Method. Product #: 7886-HTM ...

  8. Case Study: Definition, Examples, Types, and How to Write

    A case study is an in-depth study of one person, group, or event. In a case study, nearly every aspect of the subject's life and history is analyzed to seek patterns and causes of behavior. Case studies can be used in many different fields, including psychology, medicine, education, anthropology, political science, and social work.

  9. Leading with Cultural Intelligence

    Chapter 7: Cultural Intelligence in Action. Chapter Introduction. Case Study 1: Resistance to Change. Case Study 2: Young, Confident, and Moving too Fast. Case Study 3: Building a Multicultural Team—Is it Worth it? Case Study 4: A New Leadership Culture. Case Study 5: Marketing the Right Messages. Case Study 6: On Opposite Political Sides.

  10. Case Study #3

    Case Study #3. U.S. Food and Drug Administration. Protecting and Promoting Your Health. Small Business Assistance. Center for Drug Evaluation and Research. Engaging with the FDA During New Drug Development. Formal Meetings with FDA. Case Study #3. Division Phone Numbers.

  11. What Is a Case Study?

    Step 1: Select a case Step 2: Build a theoretical framework Step 3: Collect your data Step 4: Describe and analyze the case Other interesting articles When to do a case study A case study is an appropriate research design when you want to gain concrete, contextual, in-depth knowledge about a specific real-world subject.

  12. Case Study Research Method in Psychology

    Case studies are in-depth investigations of a person, group, event, or community. Typically, data is gathered from various sources using several methods (e.g., observations & interviews). The case study research method originated in clinical medicine (the case history, i.e., the patient's personal history). In psychology, case studies are ...

  13. What Exactly is a Case Study?

    Case studies are chosen for teaching based on how rich the narrative is, and whether the people in the study are required to make a decision or solve a problem. When using case studies, the focus is not on the data or the analysis. The students analyze the case and try to find ways to find solutions and solve problems.

  14. Case Study Methodology of Qualitative Research: Key Attributes and

    A case study is one of the most commonly used methodologies of social research. This article attempts to look into the various dimensions of a case study research strategy, the different epistemological strands which determine the particular case study type and approach adopted in the field, discusses the factors which can enhance the effectiveness of a case study research, and the debate ...

  15. Problem Solving & Case Studies

    1. understand the value of a case study to a variety of course offerings. 2. discuss the various components involved in the development of a good case study. 3. develop simple case studies for use in their respective classes. Uses of the Case This case could be used in a variety of courses and with a wide variety of age groups.

  16. HTML Tutorial

    Learn how to create and style web pages with HTML, the standard markup language for the web. W3Schools HTML Tutorial offers easy and interactive examples, exercises, quizzes, and references to help you master HTML. Whether you are a beginner or a professional, you will find something useful in this tutorial.

  17. W3.CSS Case Study

    W3Schools offers free online tutorials, references and exercises in all the major languages of the web. Covering popular subjects like HTML, CSS, JavaScript, Python, SQL, Java, and many, many more.

  18. 3 1 .docx

    1. In the scene with the doorman at the hotel and guest who abandons the van at the front entrance. a. What should the doorman do about the van? As soon as the doorman notices suspicious activity, they should call security and report the situation.

  19. HTM 490 :

    1 view HTM490 Case Study.docx Case Study Assignment HTM 490 Student Name: Nguyen, Thi Thanh Tu Student Id: 155175201 fAnswer To make an educated judgement on which group or groups to accommodate during the third week of March, the Royal Sonesta Boston must do a thorough analysis of th HTM 490 Seneca College

  20. Critical transitions in the Amazon forest system

    The possibility that the Amazon forest system could soon reach a tipping point, inducing large-scale collapse, has raised global concern1-3. For 65 million years, Amazonian forests remained ...

  21. COAG CASE STUDY LIST

    COAGULATION CASE STUDY CONFERENCES Andy Nguyen,M.D./ UT-Medical School at Houston, Pathology/ Last Revision on: 8/10/2016 1. Case Study Conference 1. Case Study 1 ; Case Study 2 2. Case Study Conference 2. Case Study 3 ; Case Study 4 3. Case Study Conference 3. Case Study 5 4.

  22. Case Study 3 Assignment

    Case Study 3: Safety for Female Travellers As stated in the case study, many women face safety issues while travelling. Although the safety of all travellers has increased in recent years, hotels and various travel companies need to improve the safety of women who travel frequently.

  23. [Solved] HTM305 CASE STUDY # 3 ...

    Answered by laizamor Safety is the most important aspect that everyone should care and think about. In a crowded location like a hotel, felons or criminals try to disguise as regular individuals who try to check in and blend in but never do we know that these people have bad motives and intentions.

  24. HTM130 Case Study: Hospitality and Tourism

    Case Study #3: Hospitality & Tourism. Hospitality is a fast-paced, stressful industry which often includes working long and irregular hours. The hospitality & tourism industry includes work within hotels, restaurants, travel agencies, convention centers - even theme parks - to name a few.

  25. Water

    The potential environmental impact and increased operational costs associated with the upgrading and renovation of sewage treatment plants are acknowledged. This study employs the upgrading and expansion project of a municipal sewage plant in Dongguan City, Guangdong Province, as a case study. Utilizing the principles and methods of the Life Cycle Assessment (LCA), a comprehensive assessment ...

  26. Driving change: a case study of a DNP leader in residence program in a

    The purpose of this paper is to present a case study of the development and implementation of the Leader in Residence program, followed by suggested evaluation strategies, and discussion of future innovation of leadership opportunities in non-traditional health care settings.Development of the DNP Leader in Residence ProgramThe Plan-Do-Study ...